Skip to main content

Quantitation of Molecular Pathway Activation Using RNA Sequencing Data

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2063))

Abstract

Intracellular molecular pathways (IMPs) control all major events in the living cell. IMPs are considered hotspots in biomedical sciences and thousands of IMPs have been discovered for humans and model organisms. Knowledge of IMPs activation is essential for understanding biological functions and differences between the biological objects at the molecular level. Here we describe the Oncobox system for accurate quantitative scoring activities of up to several thousand molecular pathways based on high throughput molecular data. Although initially designed for gene expression and mainly RNA sequencing data, Oncobox is now also applicable for quantitative proteomics, microRNA and transcription factor binding sites mapping data. The Oncobox system includes modules of gene expression data harmonization, aggregation and comparison and a recursive algorithm for automatic annotation of molecular pathways. The universal rationale of Oncobox enables scoring of signaling, metabolic, cytoskeleton, immunity, DNA repair, and other pathways in a multitude of biological objects. The Oncobox system can be helpful to all those working in the fields of genetics, biochemistry, interactomics, and big data analytics in molecular biomedicine.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

IMP:

Intracellular molecular pathway

miR:

MicroRNA

PAL:

Pathway activation level, calculated using RNA or protein expression data

RNAseq:

RNA sequencing

TFBS:

Transcription factor binding site

References

  1. Blagosklonny MV (2013) MTOR-driven quasi-programmed aging as a disposable soma theory: blind watchmaker vs. intelligent designer. Cell Cycle 12:1842–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  4. Sonnenschein C, Soto AM (2013) The aging of the 2000 and 2011 hallmarks of cancer reviews: a critique. J Biosci 38:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aliper AM, Korzinkin MB, Kuzmina NB, Zenin AA, Venkova LS, Smirnov PY et al (2017) Mathematical justification of expression-based pathway activation scoring (PAS). Methods Mol Biol 1613:31–51

    Article  CAS  PubMed  Google Scholar 

  6. Borisov N, Aksamitiene E, Kiyatkin A, Legewie S, Berkhout J, Maiwald T et al (2009) Systems-level interactions between insulin-EGF networks amplify mitogenic signaling. Mol Syst Biol 5:256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274:30169–30181

    Article  CAS  PubMed  Google Scholar 

  8. Kiyatkin A, Aksamitiene E, Markevich NI, Borisov NM, Hoek JB, Kholodenko BN (2006) Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J Biol Chem 281:19925–19938

    Article  CAS  PubMed  Google Scholar 

  9. Kuzmina NB, Borisov NM (2011) Handling complex rule-based models of mitogenic cell signaling (on the example of ERK activation upon EGF stimulation). Int Proc Chem Biol Environ Eng 5:76–82

    Google Scholar 

  10. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    Article  CAS  PubMed  Google Scholar 

  11. Disanza A, Frittoli E, Palamidessi A, Scita G (2009) Endocytosis and spatial restriction of cell signaling. Mol Oncol 3:280–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Filteau M, Diss G, Torres-Quiroz F, Dubé AK, Schraffl A, Bachmann VA et al (2015) Systematic identification of signal integration by protein kinase A. Proc Natl Acad Sci 112:4501–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9:297–308

    Article  CAS  PubMed  Google Scholar 

  14. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  PubMed  Google Scholar 

  15. Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. UniProt Consortium (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39:D214–D219

    Article  CAS  Google Scholar 

  17. Mathivanan S, Periaswamy B, Gandhi TKB, Kandasamy K, Suresh S, Mohmood R et al (2006) An evaluation of human protein-protein interaction data in the public domain. BMC Bioinformatics 7(Suppl 5):S19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G et al (2014) The reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477

    Article  CAS  PubMed  Google Scholar 

  19. Elkon R, Vesterman R, Amit N, Ulitsky I, Zohar I, Weisz M et al (2008) SPIKE—a database, visualization and analysis tool of cellular signaling pathways. BMC Bioinformatics 9:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Nakaya A, Katayama T, Itoh M, Hiranuka K, Kawashima S, Moriya Y et al (2013) KEGG OC: a large-scale automatic construction of taxonomy-based ortholog clusters. Nucleic Acids Res 41:D353–D357

    Article  CAS  PubMed  Google Scholar 

  21. Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 19:2155–2157

    Article  CAS  PubMed  Google Scholar 

  22. Bauer-Mehren A, Furlong LI, Sanz F (2009) Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol Syst Biol 5:290

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aliper A, Belikov AV, Garazha A, Jellen L, Artemov A, Suntsova M et al (2016) In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging (Albany NY) 8:2127–2152

    Article  CAS  Google Scholar 

  24. Aliper AM, Csoka AB, Buzdin A, Jetka T, Roumiantsev S, Moskalev A et al (2015) Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria syndrome fibroblasts are comparable to normal middle-age and old-age cells. Aging (Albany NY) 7:26–37

    Article  CAS  Google Scholar 

  25. Shtam T, Naryzhny S, Samsonov R, Karasik D, Mizgirev I, Kopylov A et al (2019) Plasma exosomes stimulate breast cancer metastasis through surface interactions and activation of FAK signaling. Breast Cancer Res Treat 174:129–141

    Article  CAS  PubMed  Google Scholar 

  26. Petrov I, Suntsova M, Ilnitskaya E, Roumiantsev S, Sorokin M, Garazha A et al (2017) Gene expression and molecular pathway activation signatures of MYCN-amplified neuroblastomas. Oncotarget 8:83768–83780

    Article  PubMed  PubMed Central  Google Scholar 

  27. Petrov I, Suntsova M, Mutorova O, Sorokin M, Garazha A, Ilnitskaya E et al (2016) Molecular pathway activation features of pediatric acute myeloid leukemia (AML) and acute lymphoblast leukemia (ALL) cells. Aging (Albany NY) 8:2936–2947

    Article  CAS  Google Scholar 

  28. Alexandrova E, Nassa G, Corleone G, Buzdin A, Aliper AM, Terekhanova N et al (2016) Large-scale profiling of signalling pathways reveals an asthma specific signature in bronchial smooth muscle cells. Oncotarget 7:25150–25161

    Article  PubMed  PubMed Central  Google Scholar 

  29. Makarev E, Izumchenko E, Aihara F, Wysocki PT, Zhu Q, Buzdin A et al (2016) Common pathway signature in lung and liver fibrosis. Cell Cycle 15:1667–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buzdin A, Sorokin M, Garazha A, Sekacheva M, Kim E, Zhukov N et al (2018) Molecular pathway activation – new type of biomarkers for tumor morphology and personalized selection of target drugs. Semin Cancer Biol 53:110–124

    Article  CAS  PubMed  Google Scholar 

  31. da Silveira WA, Hazard ES, Chung D, Hardiman G (2019) Molecular profiling of RNA tumors using high-throughput RNA sequencing: from raw data to systems level analyses. Methods Mol Biol 1908:185–204

    Article  PubMed  Google Scholar 

  32. Crow M, Gillis J (2019) Single cell RNA-sequencing: replicability of cell types. Curr Opin Neurobiol 56:69–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Otto GM, Brar GA (2018) Seq-ing answers: uncovering the unexpected in global gene regulation. Curr Genet 64:1183–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang KC, Sathiyaseelan P, Ho C, Gorski SM (2018) Evolution of tools and methods for monitoring autophagic flux in mammalian cells. Biochem Soc Trans 46:97–110

    Article  CAS  PubMed  Google Scholar 

  35. Zhang P, Lehmann BD, Shyr Y, Guo Y (2017) The utilization of formalin fixed-paraffin-embedded specimens in high throughput genomic studies. Int J Genomics 2017:1–9

    CAS  Google Scholar 

  36. Gaffney EF, Riegman PH, Grizzle WE, Watson PH (2018) Factors that drive the increasing use of FFPE tissue in basic and translational cancer research. Biotechnol Histochem 93:373–386

    Article  CAS  Google Scholar 

  37. Peters DG, Yatsenko SA, Surti U, Rajkovic A (2015) Recent advances of genomic testing in perinatal medicine. Semin Perinatol 39:44–54

    Article  PubMed  Google Scholar 

  38. Odriozola L, Corrales FJ (2015) Discovery of nutritional biomarkers: future directions based on omics technologies. Int J Food Sci Nutr 66(Suppl 1):S31–S40

    Article  PubMed  Google Scholar 

  39. Vivar JC, Pemu P, McPherson R, Ghosh S (2013) Redundancy control in pathway databases (ReCiPa): an application for improving gene-set enrichment analysis in Omics studies and “Big data” biology. OMICS 17:414–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Buzdin AA, Prassolov V, Zhavoronkov AA, Borisov NM (2017) Bioinformatics meets biomedicine: OncoFinder, a quantitative approach for interrogating molecular pathways using gene expression data. In: Tatarinova TV, Nikolsky Y (eds) Biological networks and pathway analysis. Springer, New York, NY, pp 53–83

    Chapter  Google Scholar 

  41. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8:e1002375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khatri P, Drăghici S (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21:3587–3595

    Article  CAS  PubMed  Google Scholar 

  43. Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ (2005) Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A 102:13544–13549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S, Tagett R, Donato M et al (2013) Methods and approaches in the topology-based analysis of biological pathways. Front Physiol 4:278

    Article  PubMed  PubMed Central  Google Scholar 

  45. Afsari B, Geman D, Fertig EJ (2014) Learning dysregulated pathways in cancers from differential variability analysis. Cancer Informat 13:61

    Google Scholar 

  46. Zhang J, Li J, Deng H-W (2009) Identifying gene interaction enrichment for gene expression data. PLoS One 4:e8064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Buzdin AA, Zhavoronkov AA, Korzinkin MB, Venkova LS, Zenin AA, Smirnov PY et al (2014) Oncofinder, a new method for the analysis of intracellular signaling pathway activation using transcriptomic data. Front Genet 5:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ozerov IV, Lezhnina KV, Izumchenko E, Artemov AV, Medintsev S, Vanhaelen Q et al (2016) In silico pathway activation network decomposition analysis (iPANDA) as a method for biomarker development. Nat Commun 7:13427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Artcibasova AV, Korzinkin MB, Sorokin MI, Shegay PV, Zhavoronkov AA, Gaifullin N et al (2016) MiRImpact, a new bioinformatic method using complete microRNA expression profiles to assess their overall influence on the activity of intracellular molecular pathways. Cell Cycle 15:689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nikitin D, Penzar D, Garazha A, Sorokin M, Tkachev V, Borisov N et al (2018) Profiling of human molecular pathways affected by retrotransposons at the level of regulation by transcription factor proteins. Front Immunol 9:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zolotovskaia MA, Sorokin MI, Roumiantsev SA, Borisov NM, Buzdin AA (2018) Pathway instability is an effective new mutation-based type of cancer biomarkers. Front Oncol 8:658

    Article  PubMed  Google Scholar 

  52. Zolotovskaia M, Sorokin M, Garazha A, Borisov N, Buzdin A (2020) Molecular pathway analysis of mutation data for biomarkers discovery and scoring of target cancer drugs. In: Astakhova K, Bukhari SA (eds) Nucleic acid detection and structural investigations. Methods and protocols. Springer, New York

    Google Scholar 

  53. Borisov N, Suntsova M, Sorokin M, Garazha A, Kovalchuk O, Aliper A et al (2017) Data aggregation at the level of molecular pathways improves stability of experimental transcriptomic and proteomic data. Cell Cycle 16:1810–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Buzdin AA, Zhavoronkov AA, Korzinkin MB, Roumiantsev SA, Aliper AM, Venkova LS et al (2014) The OncoFinder algorithm for minimizing the errors introduced by the high-throughput methods of transcriptome analysis. Front Mol Biosci 1:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gao S, Wang X (2007) TAPPA: topological analysis of pathway phenotype association. Bioinformatics 23:3100–3102

    Article  CAS  PubMed  Google Scholar 

  56. Ibrahim MA-H, Jassim S, Cawthorne MA, Langlands K (2012) A topology-based score for pathway enrichment. J Comput Biol 19:563–573

    Article  PubMed  CAS  Google Scholar 

  57. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C et al (2007) A systems biology approach for pathway level analysis. Genome Res 17:1537–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-S et al (2009) A novel signaling pathway impact analysis. Bioinformatics 25:75–82

    Article  CAS  PubMed  Google Scholar 

  59. Rudy J, Valafar F (2011) Empirical comparison of cross-platform normalization methods for gene expression data. BMC Bioinformatics 12:467

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  CAS  Google Scholar 

  61. Demetrashvili N, Kron K, Pethe V, Bapat B, Briollais L (2010) How to deal with batch effect in sequential microarray experiments? Mol Inform 29:387–393

    Article  CAS  PubMed  Google Scholar 

  62. Borisov N, Shabalina I, Tkachev V, Sorokin M, Garazha A, Pulin A et al (2019) Shambhala: a platform-agnostic data harmonizer for gene expression data. BMC Bioinformatics 20:66

    Article  PubMed  PubMed Central  Google Scholar 

  63. Huang H, Lu X, Liu Y, Haaland P, Marron JS (2012) R/DWD: distance-weighted discrimination for classification, visualization and batch adjustment. Bioinformatics 28:1182–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shabalin AA, Tjelmeland H, Fan C, Perou CM, Nobel AB (2008) Merging two gene-expression studies via cross-platform normalization. Bioinformatics 24:1154–1160

    Article  CAS  PubMed  Google Scholar 

  65. Deshwar AG, Morris Q (2014) PLIDA: cross-platform gene expression normalization using perturbed topic models. Bioinformatics 30:956–961

    Article  CAS  PubMed  Google Scholar 

  66. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  67. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Buzdin AA, Artcibasova AV, Fedorova NF, Suntsova MV, Garazha AV, Sorokin MI et al (2016) Early stage of cytomegalovirus infection suppresses host microRNA expression regulation in human fibroblasts. Cell Cycle 15:3378–3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A (2017) druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm 14:3098–3104

    Article  CAS  PubMed  Google Scholar 

  70. Spirin P, Lebedev T, Orlova N, Morozov A, Poymenova N, Dmitriev SE et al (2017) Synergistic suppression of t(8;21)-positive leukemia cell growth by combining oridonin and MAPK1/ERK2 inhibitors. Oncotarget 8:56991–57002

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vanhaelen Q, Mamoshina P, Aliper AM, Artemov A, Lezhnina K, Ozerov I et al (2017) Design of efficient computational workflows for in silico drug repurposing. Drug Discov Today 22:210–222

    Article  CAS  PubMed  Google Scholar 

  72. Sorokin M, Kholodenko R, Suntsova M, Malakhova G, Garazha A, Kholodenko I et al (2018) Oncobox bioinformatical platform for selecting potentially effective combinations of target cancer drugs using high-throughput gene expression data. Cancers (Basel) 10:E365

    Article  Google Scholar 

  73. Spirin PV, Lebedev TD, Orlova NN, Gornostaeva AS, Prokofjeva MM, Nikitenko NA et al (2014) Silencing AML1-ETO gene expression leads to simultaneous activation of both pro-apoptotic and proliferation signaling. Leukemia 28:2222–2228

    Article  CAS  PubMed  Google Scholar 

  74. Borisov N, Tkachev V, Suntsova M, Kovalchuk O, Zhavoronkov A, Muchnik I et al (2018) A method of gene expression data transfer from cell lines to cancer patients for machine-learning prediction of drug efficiency. Cell Cycle 17:486–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Borisov N, Tkachev V, Muchnik I, Buzdin A (2017) Individual drug treatment prediction in oncology based on machine learning using cell culture gene expression data. ACM Press, New York, NY, pp 1–6

    Google Scholar 

  76. Borisov N, Tkachev V, Buzdin A, Muchnik I (2018) Prediction of drug efficiency by transferring gene expression data from cell lines to cancer patients. In: Rozonoer L, Mirkin B, Muchnik I (eds) Braverman readings in machine learning. Key ideas from inception to current state. Springer, Cham, pp 201–212

    Chapter  Google Scholar 

  77. Vishniakova KS, Babizhaev MA, Aliper AM, Buzdin AA, Kudriavtseva AV, Egorov EE (2014) Stimulation of proliferation by carnosine: cellular and transcriptome approaches. Mol Biol (Mosk) 48:824–833

    Google Scholar 

  78. Emelianova AA, Kuzmin DV, Panteleev PV, Sorokin M, Buzdin AA, Ovchinnikova TV (2018) Anticancer activity of the goat antimicrobial peptide ChMAP-28. Front Pharmacol 9:1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Marggraf MB, Panteleev PV, Emelianova AA, Sorokin MI, Bolosov IA, Buzdin AA et al (2018) Cytotoxic potential of the novel horseshoe crab peptide polyphemusin III. Mar Drugs 16:E466

    Article  PubMed  CAS  Google Scholar 

  80. West MD, Labat I, Sternberg H, Larocca D, Nasonkin I, Chapman KB et al (2018) Use of deep neural network ensembles to identify embryonic-fetal transition markers: repression of COX7A1 in embryonic and cancer cells. Oncotarget 9:7796–7811

    Article  PubMed  Google Scholar 

  81. Aliper AM, Frieden-Korovkina VP, Buzdin A, Roumiantsev SA, Zhavoronkov A (2014) Interactome analysis of myeloid-derived suppressor cells in murine models of colon and breast cancer. Oncotarget 5:11345–11353

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sarhan J, Liu BC, Muendlein HI, Weindel CG, Smirnova I, Tang AY et al (2019) Constitutive interferon signaling maintains critical threshold of MLKL expression to license necroptosis. Cell Death Differ 26:332–347

    Article  CAS  PubMed  Google Scholar 

  83. Larkin B, Ilyukha V, Sorokin M, Buzdin A, Vannier E, Poltorak A (2017) Cutting Edge: activation of STING in T cells induces type I IFN responses and cell death. J Immunol 199:397–402

    Article  CAS  PubMed  Google Scholar 

  84. Ram DR, Ilyukha V, Volkova T, Buzdin A, Tai A, Smirnova I et al (2016) Balance between short and long isoforms of cFLIP regulates Fas-mediated apoptosis in vivo. Proc Natl Acad Sci U S A 113:1606–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wirsching A, Melloul E, Lezhnina K, Buzdin AA, Ogunshola OO, Borger P et al (2017) Temporary portal vein embolization is as efficient as permanent portal vein embolization in mice. Surgery 162:68–81

    Article  PubMed  Google Scholar 

  86. Sorokin M, Kholodenko R, Grekhova A, Suntsova M, Pustovalova M, Vorobyeva N et al (2018) Acquired resistance to tyrosine kinase inhibitors may be linked with the decreased sensitivity to X-ray irradiation. Oncotarget 9:5111–5124

    Article  PubMed  Google Scholar 

  87. de Klerk E, Fokkema IFAC, Thiadens KAMH, Goeman JJ, Palmblad M, den Dunnen JT et al (2015) Assessing the translational landscape of myogenic differentiation by ribosome profiling. Nucleic Acids Res 43:4408–4428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jovčevska I, Zupanec N, Urlep Ž, Vranič A, Matos B, Stokin CL et al (2017) Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget 8:44141–44158

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shepelin D, Korzinkin M, Vanyushina A, Aliper A, Borisov N, Vasilov R et al (2016) Molecular pathway activation features linked with transition from normal skin to primary and metastatic melanomas in human. Oncotarget 7:656–670

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Oncobox research program in oncology and by Russian Science Foundation grants 18-15-00061.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Buzdin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Borisov, N., Sorokin, M., Garazha, A., Buzdin, A. (2020). Quantitation of Molecular Pathway Activation Using RNA Sequencing Data. In: Astakhova, K., Bukhari, S. (eds) Nucleic Acid Detection and Structural Investigations. Methods in Molecular Biology, vol 2063. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0138-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0138-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0137-2

  • Online ISBN: 978-1-0716-0138-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics