Skip to main content

Photophysics and Biophysical Applications of Benzo[a]phenoxazine Type Fluorophores

  • Chapter

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2007))

Abstract

In recent years, the application of photoluminescence methods to biomedical sciences has proved to be very successful, as shown by the number of publications in the last decade. The high sensitivity of fluorescence to the local molecular environment makes it possible to probe complex mediums and/or materials from a wide range of aspects: local polarity effects, specific physical and chemical interactions, and also morphological and topological constraints [1–3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. N. Miller, Fluorescence energy transfer methods in bioanalysis, Analyst, 130, 265–270, 2005.

    Article  CAS  PubMed  Google Scholar 

  2. K. Suhling, J. Siegel, PMP Lanigan, S. Lévêque-Fort, SED Webb, D. Phillips, DM Davis and PMW French, Time-resolved fluorescence anisotropy imaging applied to live cells, Optics Letters, 29, 584–586, 2004.

    Article  PubMed  Google Scholar 

  3. M. Antiaa, L. D. Islasa, D. A. Bonessc, G. Baneyxa and V. Vogel, Single molecule fluorescence studies of surface-adsorbed fibronectin, Biomaterials, 27, 679–690, 2006.

    Article  Google Scholar 

  4. P. Greenspan and S. D. Fowler, Spectrofluorometric studies of the lipid probe, Nile Red, Journal of Lipid Research, 26, 781–789, 1985.

    CAS  PubMed  Google Scholar 

  5. Ira and G. Krishnamoorthy, Probing the Link between Proton Transport and Water Content in Lipid Membranes, Journal of Physical Chemistry B, 105, 1484–1488, 2001.

    Article  Google Scholar 

  6. M. Mazumdar, P. K. Parrack and B. Bhattacharyya, European Journal of Biochemistry, 204, 127–132, 1992,

    Article  CAS  PubMed  Google Scholar 

  7. D. L. Sackett and J. Wolff, Nile Red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces, Analytical Biochemistry, 167, 228–234, 1987.

    Article  CAS  PubMed  Google Scholar 

  8. D. M. Davis and D. J. S. Birch, Extrinsic fluorescence probe study of human serum albumin using Nile Red , Journal of Fluorescence, 23–32, 1996.

    Google Scholar 

  9. N. C. Maiti, M. M. G. Krishna, P. J. Britto, and N. Periasamy, Fluorescence dynamics of dye probes in micelles, Journal of Physical Chemistry B, 101, 11051–11060, 1997.

    Article  CAS  Google Scholar 

  10. A. Datta, D. Mandal, S. Kumar Pal and K. Bhattacharyya, Intramolecular charge transfer processes in confined systems. Nile Red in reverse micelles, Journal of Physical Chemistry B, 101, 10221–10225, 1997.

    Article  CAS  Google Scholar 

  11. V. J. P. Srivatsavoy, Enhancement of excited state nonradiative deactivation of Nile Red in γ-cyclodextrin: evidence for multiple inclusion complexes, Journal of Luminescence, 82, 17–23, 1999.

    Article  CAS  Google Scholar 

  12. G. Hungerford, E. M. S. Castanheira, M. E. C. D. Real Oliveira, M. da Graca Miguel and H. D. Burrows, Monitoring ternary systems of C12E5/water/tetradecane via the fluorescence of solvatochromic probes, Journal of Physical Chemistry B, 106, 4061–4069, 2002.

    Article  CAS  Google Scholar 

  13. A. Kumar Dutta, K. Karnada and K. Ohta, Langmuir-Blodgett films of Nile Red: a steady-state and time-resolved fluorescence study , Chemical Physics Letters, 258, 369–375, 1996.

    Article  Google Scholar 

  14. S. Uppili, K. J. Thomas, E. M. Crompton, and V. Ramamurthy, Probing zeolites with organic molecules: supercages of X and Y zeolites are superpolar, Langmuir, 16, 265–274, 2000.

    Article  CAS  Google Scholar 

  15. A. J. Carmichael and K. R. Seddon, Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red, Journal of Physical Organic Chemistry, 13, 591–595, 2000.

    Article  CAS  Google Scholar 

  16. S. Zhou and K. D. Cook, Probing solvent fractionation in electrospray droplets with laser-induced fluorescence of a solvatochromic dye, Analytical Chemistry, 72, 963–969, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. M. Choi, D. Jin, H. Kim, T. J. Kang, S. C. Jeoung, and D. Kim, Fluorescence Anisotropy of Nile Red and Oxazine 725 in an isotropic liquid crystal, Journal of Physical Chemistry B, 101 , 8092–8097, 1997.

    Article  CAS  Google Scholar 

  18. K. Matsui and K. Nozawa, Molecular probing for the microenvironment of photonics materials prepared by the Sol–Gel process, Bulletin of the Chemical Society of Japan, 70, 2331–2335, 1997.

    Article  CAS  Google Scholar 

  19. M. B. Brown, J. N. Miller and N. J. Seare, An investigation of the use of Nile Red as a long-wavelength fluorescent probe for the study of α1-acid glycoprotein-drug interactions, Journal of Pharmaceutical and Biomedical Analysis, 13, 1011–1017, 1995.

    Article  CAS  PubMed  Google Scholar 

  20. D. M. Watkins, Y. Sayed-Sweet, J. W. Klimash, N. J. Turro, and D. A. Tomalia, Dendrimers with hydrophobic cores and the formation of supramolecular dendrimer-surfactant assemblies, Langmuir, 13, 3136–3141, 1997.

    Article  CAS  Google Scholar 

  21. G. B. Dutt, S. Doraiswamy, and N. Periasamy, Molecular reorientation dynamics of polar dye probes in tertiary-butyl alcohol–water mixtures, Journal of Chemical Physics, 94, 5360–5368,1991.

    Article  CAS  Google Scholar 

  22. G. B. Dutt and S. Doraiswamy, Picosecond reorientational dynamics of polar dye probes in binary aqueous mixtures, Journal of Chemical Physics, 96, 2475–2491, 1992.

    Article  CAS  Google Scholar 

  23. J. F. Deye, T. A. Berger, and A. G. Anderson, Nile Red as a solvatochromic dye for measuring solvent strength in normal liquids and mixtures of normal liquids with supercritical and near critical fluids, Analytical Chemistry, 62, 615–, 1990.

    Article  CAS  Google Scholar 

  24. A. Cser, K. Nagy and L. Biczók, Fluorescence lifetime of Nile Red as a probe for the hydrogen bonding strength with its microenvironment, Chemical Physics Letters, 360, 473–478, 2002.

    Article  CAS  Google Scholar 

  25. P. J. G. Coutinho, E. M. S. Castanheira, M. C. Rei and M. E. C. D. Real Oliveira, Nile Red and DCM fluorescence anisotropy studies in C12E7/DPPC mixed systems, Journal of Physical Chemistry B, 106, 12841–12846, 2002.

    Article  CAS  Google Scholar 

  26. N. Ghoneim, Photophysics of Nile Red in solution. Steady state spectroscopy, Spectrochimica Acta Part A, 56, 1003–1010, 2000.

    Article  CAS  Google Scholar 

  27. A. K. Dutta, K. Kamada and K. Ohta, Spectroscopic studies of Nile Red in organic solvents and polymers, Journal of Photochemistry and Photobiology A: Chemistry, 93, 57–64, 1996.

    Article  CAS  Google Scholar 

  28. N. Sarkar, K. Das, D. N. Nath, and K.Bhattacharyya, Twisted charge transfer processes of Nile Red in homogeneous solutions and in faujasite zeolite, Langmuir, 10, 326–329, 1994.

    Article  CAS  Google Scholar 

  29. M. M. G. Krishna, Excited-state kinetics of the hydrophobic probe Nile Red in membranes and micelles, Journal of Physical Chemistry A, 103, 3589–3595, 1999.

    Article  CAS  Google Scholar 

  30. G. Hungerford, E. M. S. Castanheira, A. L. F. Baptista, P. J. G. Coutinho and M. E. C. D. Real Oliveira, Domain formation in DODAB–cholesterol mixed systems monitored via Nile Red anisotropy, Journal of Fluorescence, 15(6), 835–840, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. G. Hungerford, A. L.F. Baptista, P. J.G. Coutinho, E. M.S. Castanheira and M. E. C. D. Real Oliveira, Interaction of DODAB with neutral phospholipids and cholesterol studied using fluorescence anisotropy, Journal of Photochemistry and Photobiology A: Chemistry, 181, 99–105, 2006.

    Article  CAS  Google Scholar 

  32. R. Gvishi, R. Reisfeld and M. Eisen, Structures, spectra and ground and excited state equilibria of polycations of oxazine-170 , Chemical Physics Letters, 161, 455–460, 1989.

    Article  CAS  Google Scholar 

  33. Q-Y. Chen, D-H. Li, Y. Zhao, H-H. Yang, Q-Z. Zhua and J-G. Xu, Interaction of a novel red-region fluorescent probe, Nile Blue, with DNA and its application to nucleic acids assay, The Analyst, 124, 901–907, 1999.

    Article  PubMed  Google Scholar 

  34. H. J. van Staveren, O. C. Speelman, M. J. H. Witjes, L. Cincotta, W. M. Star, Fluorescence imaging and spectroscopy of ethyl Nile Blue A in animal models of (pre)malignancies, Photochemistry and Photobiology, 73, 32–38, 2001.

    Article  PubMed  Google Scholar 

  35. R. K. Mitra, S. S. Sinha and S. K. Pal, Interactions of Nile Blue with micelles, reverse micelles and a genomic DNA, Journal of Fluorescence, 18, 423–432, 2008.

    Article  CAS  PubMed  Google Scholar 

  36. K. Das, B. Jain and H. S. Patel, Nile Blue in Triton-X 100/benzene–hexane reverse micelles: a fluorescence spectroscopic study, Spectrochimica Acta Part A, 60, 2059–2064, 2004.

    Article  Google Scholar 

  37. H-W. Gao, Q-S. YE and W-G. Liu, Langmuir aggregation of Nile Blue and Safranine T on sodium dodecylbenzenesulfonate surface and its application to quantitative determination of anionic detergent, Analytical Sciences, 18, 455–459, 2002.

    Article  CAS  PubMed  Google Scholar 

  38. H. Ju, Y. Ye and Y. Zhu, Interaction between Nile Blue and immobilized single- or double-stranded DNA and its application in electrochemical recognition, Electrochimica Acta, 50, 1361–1367, 2005.

    Article  CAS  Google Scholar 

  39. Y-I. Yang, H-Y. Hong, I-S. Lee, D-G. Bai, G-S. Yoo, and J-K. Choi, Detection of DNA using a visible dye, Nile Blue, in electrophoresed gels, Analytical Biochemistry, 280, 322–324, 2000.

    Article  CAS  PubMed  Google Scholar 

  40. C. Nasr and S. Hotchandani, Excited-state behavior of Nile Blue H-aggregates bound to SiO2 and SnO2 colloids, Chemical Materials, 12, 1529–1535, 2000.

    Article  CAS  Google Scholar 

  41. D. A. Steinhurst and J. C. Owrutsky, Second harmonic generation from oxazine dyes at the air/water interface, Journal of Physical Chemistry B, 105, 3062–3072, 2001.

    Article  CAS  Google Scholar 

  42. A. Douhal, Photophysics of Nile Blue A in pronton-accepting and electron-donating solvents, Journal of Physical Chemistry, 98, 13131–13137, 1994.

    Article  CAS  Google Scholar 

  43. T. Kobayashi, Y. Takagi, H. Kandori, K. Kemnitz and K. Yoshihara, Femtosecond intermolecular electron transfer in diffusionless, weakly polar systems: Nile Blue in aniline and N, N dimethylaniline, Chemical Physics Letters, 180, 416–422, 1991.

    Article  CAS  Google Scholar 

  44. A. Grofcsik, M. Kubinyi and W. J. Jones, Intermolecular photoinduced proton transfer in Nile Blue and Oxazine 720, Chemical Physics Letters, 250, 261–265, 1996.

    Article  CAS  Google Scholar 

  45. A. Grofcsika, M. Kubinyia, A. Ruzsinszkya, T. Veszprémi and W. J. Jones, Quantum chemical studies on excited state intermolecular proton transfer of oxazine dyes, Journal of Molecular Structure, 555, 15–19, 2000.

    Article  Google Scholar 

  46. R. Sens and K. H. Drexhage, Fluorescence quantum yield of oxazine and carbazine dyes, Journal of Luminescence, 25/25, 709–712, 1981.

    Article  Google Scholar 

  47. V. H. J. Frade, M. Sameiro T. Gonçalves, P. J.G. Coutinho and J. C.V.P. Moura, Journal of Photochemistry and Photobiology A: Chemistry 185, 220–230, 2007.

    Article  CAS  Google Scholar 

  48. V. H. J. Frade, P. J. G. Coutinho, J. C. V. P. Moura and M. S. T. Gonçalves, Functionalised benzo[a]phenoxazine dyes as long-wavelength fluorescent probes for amino acids, Tetrahedron, 63, 1654–1663, 2007.

    Article  CAS  Google Scholar 

  49. V. H. J. Frade, S. A. Barros, J. C. V. P. Moura, P. J. G. Coutinho and M. S. T. Gonçalves, Synthesis of short and long-wavelength functionalised probes: amino acids’ labelling and photophysical studies, Tetrahedron, 63, 12405–12418, 2007.

    Article  CAS  Google Scholar 

  50. P. J. G. Coutinho, C. M. A. Alves and M. S. T. Gonçalves, submitted to publication.

    Google Scholar 

  51. K. Meguro, M. Ueno and K. Esumi, Micelle formation in aqueous media, in Nonionic Surfactants: Physical Chemistry, M. J. Schick Ed., Surfactant Science Series, Marcel Dekker: New York, Vol. 23, pp 109–183, 1987.

    Google Scholar 

  52. H. Heerklotz, H. Binder, G. Lantzsch, G. Klose, and A. Blume, Lipid/detergent interaction thermodynamics as a function of molecular shape, Journal of Physical Chemistry B, 101, 639–645, 1997.

    Article  CAS  Google Scholar 

  53. D. B. Siano and D. E. Metzler, Band shapes of the electronic spectra of complex molecules, Journal of Chemical Physics, 51, 1856–1861, 1969.

    Article  CAS  Google Scholar 

  54. J. Shobha, V. Srinivas, and D. Balasubramanian, Differential modes of incorporation of probe molecules in micelles and in bilayer vesicles, Journal of Physical Chemistry, 93, 17–20, 1989.

    Article  CAS  Google Scholar 

  55. T. Inoue, Interaction of Surfactants with Phospholipid Vesicles, in Vesicles, M. Rosoff Ed., Surfactant Science Series, Marcel Dekker: New York, Vol. 62, pp. 151–195, 1996.

    Google Scholar 

  56. H. M. McConnell and A. Radhakrishnan, Condensed complexes of cholesterol and phospholipids, Biochimica Biophysica Acta - Biomembranes, 1610, 159–173, 2003.

    Article  CAS  Google Scholar 

  57. R. P. Masona, T. N. Tulenkob and R. F. Jacob, Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology, Biochimica Biophysica Acta - Biomembranes, 1610, 198–207, 2003.

    Article  Google Scholar 

  58. S. Koronkiewicz and S. Kalinowski, Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies, Biochimica Biophysica Acta – Biomembranes, 1661, 196–203, 2004.

    Article  CAS  Google Scholar 

  59. Ni. Marmé, G. Habl and J-P. Knemeyer, Aggregation behavior of the red-absorbing oxazine derivative MR 121: A new method for determination of pure dimer spectra, Chemical Physics Letters, 408, 221–225, 2005.

    Article  Google Scholar 

  60. M. J. Kamlet, J. L. M. Abboud, M. H. Abraham, and R. W. Taft, Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation, Journal of Organic Chemistry, 48, 2877–2887, 1983.

    Article  CAS  Google Scholar 

  61. R. Sens and K. H. Drexhage, Fluorescence quantum yield of oxazine and carbazine laser dyes, Journal of Luminescence, 24, 709–712, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Coutinho, P.J. (2009). Photophysics and Biophysical Applications of Benzo[a]phenoxazine Type Fluorophores. In: Reviews in Fluorescence 2007. Reviews in Fluorescence, vol 2007. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88722-7_14

Download citation

Publish with us

Policies and ethics