Skip to main content

Regulation of Fatty Acid Oxidation of the Heart

  • Chapter
  • 2312 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 2))

Abstract

The heart has very high energy demands and requires a large amount of ATP in order to maintain contraction and ionic homeostasis (Opie 1998). To meet this high demand, the heart acts as a metabolic omnivore, metabolizing a variety of carbon substrates, including carbohydrates (glucose, lactate, and pyruvate), fatty acids, and ketone bodies (Neely and Morgan 1974; King and Opie 1998; Stanley et al. 2005). Under normal aerobic conditions, the heart preferentially metabolizes fatty acids, which contribute between 60% and 80% of the required ATP (Lopaschuk et al. 1994a; Stanley and Chandler 2002), with carbohydrates contributing the residual 20% to 40%. While there are many similarities in fatty acid oxidation in various tissues, the regulation of fatty acid oxidation in the heart can differ dramatically from regulation in tissues like liver, skeletal muscle and kidney.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291: 261–6

    PubMed  CAS  Google Scholar 

  • Abumrad N, Harmon C, Ibrahimi A (1998) Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 39: 230–318

    PubMed  CAS  Google Scholar 

  • Abumrad NA, Park JH, Park CR (1984) Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein. J Biol Chem 259: 8945–8953

    PubMed  CAS  Google Scholar 

  • Abumrad NA, Perkins RC, Park JH, Park CR (1981) Mechanism of long chain fatty acid permeation in the isolated adipocyte. J Biol Chem 256: 9183–9191

    PubMed  CAS  Google Scholar 

  • Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, Al-Majali KM, Trembling PM, Mann CJ, Shoulders CC, Graf D, St LE, Kurtz TW, Kren V, Pravenec M, Ibrahimi A, Abumrad NA, Stanton LW, Scott J (1999) Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21: 76–83

    PubMed  CAS  Google Scholar 

  • Alam N, Saggerson ED (1998) Malonyl-CoA and the regulation of fatty acid oxidation in soleus muscle. Biochem J 334 (Pt 1), 233–41

    PubMed  CAS  Google Scholar 

  • Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267: 742–50

    Google Scholar 

  • Altarejos JY, Taniguchi M, Clanachan AS, Lopaschuk GD (2005) Myocardial ischemia differentially regulates LKB1 and an alternate 5’-AMP-activated protein kinase kinase. J Biol Chem 280: 183–90

    PubMed  CAS  Google Scholar 

  • Anderson MP, Welsh MJ (1990) Fatty acids inhibit apical membrane chloride channels in airway Epithelia. PNAS 87: 7334–7338

    PubMed  CAS  Google Scholar 

  • Augustus AS, Kako Y, Yagyu H, Goldberg IJ (2003) Routes of FA delivery to cardiac muscle: modulation of lipoprotein lipolysis alters uptake of TG-derived FA. Am J Physiol Endocrinol Metab 284: E331–E339

    PubMed  CAS  Google Scholar 

  • Augustus A, Yagyu H, Haemmerle G, Bensadoun A, Vikramadithyan RK, Park SY, Kim JK, Zechner R, Goldberg IJ (2004) Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression. J Biol Chem 279: 25050–25057

    PubMed  CAS  Google Scholar 

  • Awan MM, Saggerson ED (1993) Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J 295 (Pt 1): 61–6

    Google Scholar 

  • Bai DH, Pape ME, Lopez-Casillas F, Luo XC, Dixon JE, Kim KH (1986) Molecular cloning of cDNA for acetyl-coenzyme A carboxylase. J Biol Chem 261: 12395–12399

    PubMed  CAS  Google Scholar 

  • Barger PM, Kelly DP (1999) Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms. Am J Med Sci 318: 36–42

    PubMed  CAS  Google Scholar 

  • Barger PM, Kelly DP (2000) PPAR Signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10: 238–245

    PubMed  CAS  Google Scholar 

  • Benzi RH, Lerch R (1992) Dissociation between contractile function and oxidative metabolism in postischemic myocardium. Attenuation by ruthenium red administered during reperfusion. Circ Res 71: 567–76

    CAS  Google Scholar 

  • Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53: 409–435

    PubMed  CAS  Google Scholar 

  • Berk PD, Wada H, Horio Y, Potter BJ, Sorrentino D, Zhou S, Isola LM, Stump D, Kiang C, Thung S (1990) Plasma membrane fatty acid-binding protein and mitochondrial Glutamic- Oxaloacetic Transaminase of rat liver are related. PNAS 87: 3484–3488

    PubMed  CAS  Google Scholar 

  • Berk PD, Zhou SL, Kiang CL, Stump D, Bradbury M, Isola LM (1997) Uptake of long chain free fatty acids is selectively up-regulated in adipocytes of Zucker Rats with genetic obesity and non-insulin-dependent diabetes mellitus. J Biol Chem 272: 8830–8835

    PubMed  CAS  Google Scholar 

  • Binas BERT, Danneberg HEIK, McWhir JI, Mullins LIN, Clark AJ (1999) Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J 13: 805–812

    PubMed  CAS  Google Scholar 

  • Bing RJ, Siegel A, Ungar I, Gilbert M (1954). Metabolism of the Human Heart .2. Studies on fat, ketone and amino acid metabolism. Am J Med 16: 504–515

    PubMed  CAS  Google Scholar 

  • Binnert C, Koistinen HA, Martin G, Andreelli F, Ebeling P, Koivisto VA, Laville M, Auwerx J, Vidal H (2000) Fatty acid transport protein-1 mRNA expression in skeletal muscle and in adipose tissue in humans. Am J Physiol Endocrinol Metab 279: E1072–E1079

    PubMed  CAS  Google Scholar 

  • Bonen A, Luiken JJ, Glatz J F (2002) Regulation of fatty acid transport and membrane transporters in health and disease. Mol Cell Biochem 239: 181–192

    PubMed  CAS  Google Scholar 

  • Bonen A, Luiken JJFP, Arumugam Y, Glatz JFC, Tandon NN (2000) Acute Regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem 275: 14501–14508

    PubMed  CAS  Google Scholar 

  • Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137: 354–366

    PubMed  CAS  Google Scholar 

  • Brinkmann JF, Abumrad NA, Ibrahimi A, van d V, Glatz JF (2002) New insights into long-chain fatty acid uptake by heart muscle: a crucial role for fatty acid translocase/CD36. Biochem J 367: 561–570

    PubMed  CAS  Google Scholar 

  • Brown GK, Scholem RD, Bankier A, Danks DM (1984) Malonyl coenzyme A decarboxylase deficiency. J Inherit Metab Dis. 7: 21–26

    PubMed  CAS  Google Scholar 

  • Campbell FM, Kozak R, Wagner A, Altarejos JY, Dyck JRB, Belke DD, Severson DL, Kelly DP, Lopaschuk GD (2002) A role for peroxisome proliferator-activated receptor alpha (PPAR alpha) in the control of cardiac malonyl-CoA levels - Reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPAR alpha are associated with higher concentrations of maloncyl-CoA and reduced expression of malonyl-CoA decarboxlase. J Biol Chem 277: 4098–4103

    PubMed  CAS  Google Scholar 

  • Carley AN, Severson DL (2005) Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta 1734: 112–26

    PubMed  CAS  Google Scholar 

  • Carling D, Aguan K, Woods A, Verhoeven AJ, Beri RK, Brennan CH, Sidebottom C, Davison MD, Scott J (1994) Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem 269: 11442–8

    PubMed  CAS  Google Scholar 

  • Carling D, Clarke PR, Zammit VA, Hardie DG (1989) Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur J Biochem 186: 129–36

    PubMed  CAS  Google Scholar 

  • Carling D, Woods A, Thornton C, Cheung PC, Smith FC, Ponticos M, Stein SC (1997) Molecular characterization of the AMP-activated protein kinase and its role in cellular metabolism. Biochem Soc Trans 25: 1224–8

    PubMed  CAS  Google Scholar 

  • Carling D, Zammit VA, Hardie DG (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223: 217–222

    PubMed  CAS  Google Scholar 

  • Cheng LH, Ding GL, Qin QH, Huang Y, Lewis W, He N, Evans RM, Schneider MD, Brako FA, Xiao Y, Chen YQE, Yang QL (2004a) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10: 1245–1250

    PubMed  CAS  Google Scholar 

  • Cheng L, Ding G, Qin Q, Xiao Y, Woods D, Chen YE, Yang Q (2004b) Peroxisome proliferator-activated receptor [delta] activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun 313: 277–286

    PubMed  CAS  Google Scholar 

  • Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, Saffitz JE, Schaffer JE (2001) A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 107: 813–822

    PubMed  CAS  Google Scholar 

  • Choi JY, Martin CE (1999) The Saccharomyces cerevisiae FAT1 Gene Encodes an Acyl-CoA Synthetase That Is Required for Maintenance of Very Long Chain Fatty Acid Levels. J Biol Chem 274: 4671–4683

    PubMed  CAS  Google Scholar 

  • Christian B, Zainab EAT, Mireille M, Josef M (1998) Palmitate oxidation by the mitochondria from volume-overloaded rat hearts. Mol Cell Biochem 180: 117–128

    PubMed  CAS  Google Scholar 

  • Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, Silverstein RL, Abumrad NA (2000) Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem 275: 32523–32529

    PubMed  CAS  Google Scholar 

  • Coe NR, Smith AJ, Frohnert BI, Watkins PA, Bernlohr DA (1999) The fatty acid transport protein (FATP1) Is a very long chain acyl-CoA synthetase. J Biol Chem 274: 36300–36304

    PubMed  CAS  Google Scholar 

  • Coleman RA, Lewin TM, Muoio DM (2000) Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr 20: 77–103

    PubMed  CAS  Google Scholar 

  • Crass MF (1972) Exogenous substrate effects on endogenous lipid-metabolism in working rat-heart. Biochim Biophys Acta 280: 71–81

    PubMed  CAS  Google Scholar 

  • Crass MF (1977) Regulation of triglyceride-metabolism in isotopically pre-labeled perfused heart. Fed Proc 36: 1995–1999

    PubMed  CAS  Google Scholar 

  • Davies SP, Sim AT, Hardie DG (1990) Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur J Biochem 187: 183–190

    PubMed  CAS  Google Scholar 

  • DeLuca JG, Doebber TW, Kelly LJ, Kemp RK, Molon-Noblot S, Sahoo SP, Ventre J, Wu MS, Peters JM, Gonzalez FJ, Moller DE (2000) Evidence for Peroxisome Proliferator-Activated Receptor (PPAR)alpha -independent peroxisome proliferation: Effects of PPARgamma /delta-specific agonists in PPARα -null mice. Mol Pharmacol 58: 470–476

    PubMed  CAS  Google Scholar 

  • Duan SZ, Ivashchenko CY, Russell MW, Milstone DS, Mortensen RM (2005) Cardiomyocyte-specific knockout and agonist of Peroxisome Proliferator-Activated Receptor-γ Both induce cardiac hypertrophy in mice. Circ Res 97: 372–379

    PubMed  CAS  Google Scholar 

  • Dyck JR, Berthiaume LG, Thomas PD, Kantor PF, Barr AJ, Barr R, Singh D, Hopkins TA, Voilley N, Prentki M, Lopaschuk GD (2000) Characterization of rat liver malonyl-CoA decarboxylase and the study of its role in regulating fatty acid metabolism. Biochem J 350 Pt 2:599-608

    PubMed  CAS  Google Scholar 

  • Dyck JR, Cheng JF, Stanley WC, Barr R, Chandler MP, Brown S, Wallace D, Arrhenius T, Harmon C, Yang G, Nadzan AM, Lopaschuk GD (2004) Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res 94: 78–84

    Google Scholar 

  • Dyck JR., Kudo N, Barr AJ, Davies SP, Hardie DG, Lopaschuk GD (1999) Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5’-AMP activated protein kinase. Eur J Biochem 262: 184–90

    PubMed  CAS  Google Scholar 

  • Dyck JRB, Barr AJ, Barr RL, Kolattukudy PE, Lopaschuk GD (1998) Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation. Am J Physiol Heart Circ Physiol 44: H2122–H2129

    Google Scholar 

  • Dyck JRB, Gao G, Widmer J, Stapleton D, Fernandez CS, Kemp BE, Witters LA (1996) Regulation of 5’-AMP-activated Protein Kinase Activity by the Noncatalytic beta and gamma Subunits. J Biol Chem 271: 17798–17803

    PubMed  CAS  Google Scholar 

  • el Alaoui-Talibi Z, Guendouz A, Moravec M, Moravec J (1997) Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine. Am J Physiol Heart Circ Physiol 272: H1615–H1624

    CAS  Google Scholar 

  • el Alaoui-Talibi Z, Landormy S, Loireau A, Moravec J (1992) Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Physiol Heart Circ Physiol 262: H1068–H1074

    CAS  Google Scholar 

  • Enerback S, Gimble JM (1993) Lipoprotein-Lipase gene-expression - physiological regulators at the transcriptional and posttranscriptional level. Biochim Biophys Acta 1169: 107–125

    PubMed  CAS  Google Scholar 

  • Engel AG, Angelini C (1973) Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science 179: 899–902

    PubMed  CAS  Google Scholar 

  • Escher P, Wahli W (2000) Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 448: 121–38

    PubMed  CAS  Google Scholar 

  • Faergeman NJ, Knudsen J (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323: 1–12

    PubMed  CAS  Google Scholar 

  • Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, Pearce SF, Silverstein RL (1999) A null mutation in Murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem 274: 19055–19062

    PubMed  CAS  Google Scholar 

  • Fielding BA, Frayn KN (1998) Lipoprotein lipase and the disposition of dietary fatty acids. Br J Nutr 80: 495–502

    PubMed  CAS  Google Scholar 

  • Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP (2002) The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. J Clin Invest 109: 121–30

    PubMed  CAS  Google Scholar 

  • FitzPatrick DR, Hill A, Tolmie JL, Thorburn DR, Christodoulou J (1999) The molecular basis of malonyl-CoA decarboxylase deficiency. Am J Hum Genet 65: 318–326

    PubMed  CAS  Google Scholar 

  • Folmes CD, Clanachan AS, Lopaschuk, GD (2005) Fatty acid oxidation inhibitors in the management of chronic complications of atherosclerosis. Curr Atheroscler Rep 7: 63–70

    PubMed  CAS  Google Scholar 

  • Frohlich ED, Apstein C, Chobanian AV, Devereux RB, Dustan HP, Dzau V, Fauad-Tarazi F, Horan MJ, Marcus M, Massie B (1992) The heart in hypertension. N Engl J Med 327: 998–1008

    PubMed  CAS  Google Scholar 

  • Gao G, Fernandez CS, Stapleton D, Auster AS, Widmer J, Dyck JRB, Kemp BE, Witters LA (1996) Non-catalytic beta- and [IMAGE]-Subunit Isoforms of the 5‘-AMP-activated Protein Kinase. J Biol Chem 271: 8675–8681

    PubMed  CAS  Google Scholar 

  • Gao J, Waber L, Bennett MJ, Gibson KM, Cohen JC (1999) Cloning and mutational analysis of human malonyl-coenzyme A decarboxylase. J. Lipid Res 40: 178–182

    PubMed  CAS  Google Scholar 

  • Gilde AJ, van der Lee KAJM, Willemsen PHM, Chinetti G, van der Leij FR, Van der Vusse GJ, Staels B, van Bilsen M (2003) Peroxisome proliferator-activated receptor (PPAR) alpha and PPAR beta/delta, but not PPAR gamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 92: 518–524

    PubMed  CAS  Google Scholar 

  • Glatz JF, Storch J (2001) Unravelling the significance of cellular fatty acid-binding proteins. Curr Opin Lipidol 12: 267–274

    PubMed  CAS  Google Scholar 

  • Glatz JF, van Nieuwenhoven FA, Luiken JJ, Schaap FG, van d V (1997) Role of membrane-associated and cytoplasmic fatty acid-binding proteins in cellular fatty acid metabolism. Prostaglandins Leukot. Essent. Fatty Acids 57: 373–378

    CAS  Google Scholar 

  • Goodwin GW, Taegtmeyer H (2000) Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol Heart Circ Physiol 279: H1490–H1501

    PubMed  CAS  Google Scholar 

  • Goodwin GW, Taylor CS, Taegtmeyer H (1998) Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 273: 29530–29539

    PubMed  CAS  Google Scholar 

  • Greenwalt DE, Scheck SH, Rhinehart-Jones T (1995) Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. J Clin. Invest 96: 1382–1388

    PubMed  CAS  Google Scholar 

  • Gregersen N, Andresen BS, Corydon MJ, Corydon TJ, Olsen RK, Bolund L, Bross P (2001) Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship. Hum Mutat 18: 169–189

    PubMed  CAS  Google Scholar 

  • Gregersen N, Bross P, Andresen BS (2004) Genetic defects in fatty acid beta-oxidation and acyl-CoA dehydrogenases. Molecular pathogenesis and genotype-phenotype relationships. Eur J Biochem 271: 470–482

    PubMed  CAS  Google Scholar 

  • Gutknecht J (1988) Proton conductance caused by long-chain fatty acids in phospholipid bilayer membranes. J Membr Biol 106: 83–93

    PubMed  CAS  Google Scholar 

  • Ha J, Daniel S, Broyles SS, Kim KH (1994) Critical phosphorylation sites for acetyl-CoA carboxylase activity. J Biol Chem 269: 22162–22168

    PubMed  CAS  Google Scholar 

  • Ha J, Lee JK, Kim KS, Witters LA, Kim KH (1996) Cloning of human acetyl-CoA carboxylase-[beta] and its unique features. Proc Natl Acad Sci USA 93: 11466–11470

    PubMed  CAS  Google Scholar 

  • Hale DE, Batshaw ML, Coates PM, Frerman FE, Goodman SI, Singh I, Stanley CA (1985) Long-chain acyl coenzyme A dehydrogenase deficiency: an inherited cause of nonketotic hypoglycemia. Pediatr Res 19: 666–671

    PubMed  CAS  Google Scholar 

  • Hall JL, Lopaschuk GD, Barr A, Bringas J, Pizzurro RD, Stanley WC (1996a) Increased cardiac fatty acid uptake with dobutamine infusion in swine is accompanied by a decrease in malonyl CoA levels. Cardiovasc Res 32: 879–885

    PubMed  CAS  Google Scholar 

  • Hall JL, Stanley WC, Lopaschuk GD, Wisneski JA, Pizzurro RD, Hamilton CD, McCormack JG (1996b) Impaired pyruvate oxidation but normal glucose uptake in diabetic pig heart during dobutamine-induced work. Am J Physiol Heart Circ Physiol 40: H2320–H2329

    Google Scholar 

  • Hamilton JA, Civelek VN, Kamp F, Tornheim K, Corkey BE (1994) Changes in internal pH caused by movement of fatty acids into and out of clonal pancreatic beta-cells (HIT). J Biol Chem 269: 20852–20856

    PubMed  CAS  Google Scholar 

  • Hamilton JA, Kamp F (1999) How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 48: 2255–2269

    PubMed  CAS  Google Scholar 

  • Harmon CM, Abumrad NA (1993) Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J Membr Biol 133: 43–49

    PubMed  CAS  Google Scholar 

  • Harmon CM, Luce P, Abumrad NA (1992) Labelling of an 88 kDa adipocyte membrane protein by sulpho-N-succinimidyl long-chain fatty acids: inhibition of fatty acid transport. Biochem Soc Trans 20: 811–813

    PubMed  CAS  Google Scholar 

  • Hauton D, Bennett MJ, Evans RD (2001) Utilisation of triacylglycerol and non-esterified fatty acid by the working rat heart: myocardial lipid substrate preference. Biochim Biophys Acta 1533: 99–109

    PubMed  CAS  Google Scholar 

  • Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DD, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2: 28

    PubMed  Google Scholar 

  • Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG (1995) 5’-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem 270: 27186–91

    PubMed  CAS  Google Scholar 

  • Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: An hypothesis. Exp Biol Med 226: 78–84

    CAS  Google Scholar 

  • Hirsch D, Stahl A, Lodish HF (1998) A family of fatty acid transporters conserved from mycobacterium to man. PNAS 95: 8625–8629

    PubMed  CAS  Google Scholar 

  • Hopkins TA, Sugden MC, Holness MJ, Kozak R, Dyck JR, Lopaschuk GD (2003) Control of cardiac pyruvate dehydrogenase activity in peroxisome proliferator-activated receptor-alpha transgenic mice. Am J Physiol Heart Circ Physiol 285: 270–6

    Google Scholar 

  • Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/Calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280: 29060–6

    PubMed  CAS  Google Scholar 

  • Huss JM, Kelly DP (2004) Nuclear receptor signaling and cardiac energetics. Circ Res 95: 568–578

    PubMed  CAS  Google Scholar 

  • Ibrahimi A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K, Cameron R, Abumrad N A (1999) Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem 274: 26761–26766

    PubMed  CAS  Google Scholar 

  • Idellwenger JA, Grotyohann LW, Neely JR (1978) Coenzyme-A and carnitine distribution in normal and ischemic hearts. J Biol Chem 253: 4310–4318

    CAS  Google Scholar 

  • Kamataki A, Takahashi S, Masamura K, Iwasaki T, Hattori H, Naiki H, Yamada K, Suzuki J, Miyamori I, Sakai J (2002) Remnant lipoprotein particles are taken up into myocardium through VLDL receptor–a possible mechanism for cardiac fatty acid metabolism. Biochem Biophys Res Commun 293: 1007–1013

    PubMed  CAS  Google Scholar 

  • Kantor PF, Lucien A, Kozak R, Lopaschuk GD (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86: 580–588

    PubMed  CAS  Google Scholar 

  • Karmazyn M, Moffat MP (1993) Na+/H+ exchange and regulation of intracellular Ca2+. Cardiovasc Res 27: 2079–2080

    PubMed  CAS  Google Scholar 

  • Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K (1999) The Myocardial Na+-H+ exchange: structure, regulation, and its role in heart disease. Circ Res 85: 777–786

    PubMed  CAS  Google Scholar 

  • Kelly DP, Hale DE, Rutledge SL, Ogden ML, Whelan AJ, Zhang Z, Strauss AW (1992) Molecular basis of inherited medium-chain acyl-CoA dehydrogenase deficiency causing sudden child death. J Inherit Metab Dis 15: 171–80

    PubMed  CAS  Google Scholar 

  • Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochim Biophys Acta 1486: 1–17

    PubMed  CAS  Google Scholar 

  • Kerner J, Hoppel CL (2002) Radiochemical malonyl-CoA decarboxylase assay: Activity and subcellular distribution in heart and skeletal muscle. Anal Biochem 306: 283–289

    PubMed  CAS  Google Scholar 

  • Kiens B, Kristiansen S, Jensen P, Richter EA, Turcotte LP (1997) Membrane associated fatty acid binding protein (FABPpm) in human skeletal muscle is increased by endurance training. Biochem Biophys Res Commun 231: 463–465

    PubMed  CAS  Google Scholar 

  • Kim YS, Kolattukudy PE (1978) Purification and properties of malonyl-CoA decarboxylase from rat-liver mitochondria and its immunological comparison with enzymes from rat-brain, heart, and mammary-gland. Arch Biochem Biophys 190: 234–246

    PubMed  CAS  Google Scholar 

  • King LM, Opie LH (1998) Glucose and glycogen utilisation in myocardial ischemia–changes in metabolism and consequences for the myocyte. Mol Cell Biochem 180: 3–26

    PubMed  CAS  Google Scholar 

  • Kintaka T, Tanaka T, Imai M, Adachi I, Narabayashi I, Kitaura Y (2002) CD36 genotype and long-chain fatty acid uptake in the heart. Circ J 66: 819–825

    PubMed  CAS  Google Scholar 

  • Knudsen J, Mandrup S, Rasmussen JT, Andreasen PH, Poulsen F, Kristiansen K (1993) The function of acyl-CoA-binding protein (ACBP)/diazepam binding inhibitor (DBI). Mol Cell Biochem 123: 129–138

    PubMed  CAS  Google Scholar 

  • Kuang M, Febbraio M, Wagg C, Lopaschuk GD, Dyck JR (2004) Fatty acid translocase/CD36 deficiency does not energetically or functionally compromise hearts before or after ischemia. Circulation 109: 1550–7

    PubMed  CAS  Google Scholar 

  • Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD (1995) High-rates of fatty-acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5’-AMP-activated protein-kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270: 17513–17520

    PubMed  CAS  Google Scholar 

  • Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD (1996) Characterization of 5‘AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta 1301: 67–75

    PubMed  Google Scholar 

  • Kunau WH, Dommes V, Schulz H (1995) Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: A century of continued progress. Prog Lipid Res.34: 267–342

    PubMed  CAS  Google Scholar 

  • Kwok S, Singh-Bist A, Natu V, Kraemer FB (1997) Dietary regulation of the very low density lipoprotein receptor in mouse heart and fat. Horm. Metab Res 29: 524–529

    PubMed  CAS  Google Scholar 

  • Latipaa PM, Karki TT, Hiltunen JK, Hassinen IE (1986) Regulation of palmitoylcarnitine oxidation in isolated rat liver mitochondria. Role of the redox state of NAD(H). Biochim Biophys Acta 875: 293–300

    PubMed  CAS  Google Scholar 

  • Lee CH, Olson P, Evans RM (2003) Minireview: Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144: 2201–2207

    PubMed  CAS  Google Scholar 

  • Lee JK, Kim KH (1999) Roles of acetyl-CoA carboxylase [beta] in muscle cell differentiation and in mitochondrial fatty acid oxidation. Biochem. Biophys Res Commun. 254: 657–660

    PubMed  CAS  Google Scholar 

  • Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106: 847–856

    PubMed  CAS  Google Scholar 

  • Levak-Frank S, Hofmann W, Weinstock PH, Radner H, Sattler W, Breslow JL, Zechner R (1999) Induced mutant mouse lines that express lipoprotein lipase in cardiac muscle, but not in skeletal muscle and adipose tissue, have normal plasma triglyceride and high-density lipoprotein-cholesterol levels. PNAS 96: 3165–3170

    PubMed  CAS  Google Scholar 

  • Liu B, Clanachan AS, Schulz R, Lopaschuk GD (1996a) Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res 79: 940–8

    PubMed  CAS  Google Scholar 

  • Liu B, el Alaoui-Talibi Z, Clanachan AS, Schulz R, Lopaschuk GD (1996b) Uncoupling of contractile function from mitochondrial TCA cycle activity and MVO2 during reperfusion of ischemic hearts. Am J Physiol 270: 72–80

    Google Scholar 

  • Liu Q, Docherty JC, Rendell JC, Clanachan AS, Lopaschuk GD (2002) High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol 39: 718–25

    PubMed  CAS  Google Scholar 

  • Lopaschuk GD (1996) Abnormal mechanical function in diabetes: relationship to altered myocardial carbohydrate/lipid metabolism. Coron Artery Dis 7: 116–23

    PubMed  CAS  Google Scholar 

  • Lopaschuk GD, Barr R, Thomas PD, Dyck JRB (2003) Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 93: E33–E37

    PubMed  CAS  Google Scholar 

  • Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO (1994a) Regulation of fatty-acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213: 263–276

    PubMed  CAS  Google Scholar 

  • Lopaschuk GD, Collins-Nakai R, Olley PM, Montague TJ, Mcneil G, Gayle M, Penkoske P, Finegan BA (1994b) Plasma fatty acid levels in infants and adults after myocardial ischemia. Am Heart J 128: 61–7

    PubMed  CAS  Google Scholar 

  • Lopaschuk GD, Rebeyka IM, Allard MF (2002) Metabolic modulation: a means to mend a broken heart. Circulation 105: 140–2

    PubMed  CAS  Google Scholar 

  • Lopaschuk GD, Spafford MA, Davies NJ, Wall SR (1990) Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 66:546-53

    PubMed  CAS  Google Scholar 

  • Luiken JJ, Coort SL, Koonen DP, Bonen A, Glatz JF (2004a) Signalling components involved in contraction-inducible substrate uptake into cardiac myocytes. Proc Nutr Soc 63: 251–258

    PubMed  CAS  Google Scholar 

  • Luiken JJ, Koonen DP, Coumans WA, Pelsers MM, Binas B, Bonen A, Glatz JF (2003a) Long-chain fatty acid uptake by skeletal muscle is impaired in homozygous, but not heterozygous, heart-type-FABP null mice. Lipids 38: 491–496

    PubMed  CAS  Google Scholar 

  • Luiken JJ, van Nieuwenhoven FA, America G, Van der Vusse GJ, Glatz JF (1997) Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: involvement of sarcolemmal proteins. J Lipid Res 38: 745–758

    PubMed  CAS  Google Scholar 

  • Luiken JJFP, Coort SLM, Koonen DPY, van der Horst DJ, Bonen A, Zorzano A, Glatz JFC (2004b) Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch 448: 1–15

    PubMed  CAS  Google Scholar 

  • Luiken JJFP, Coort SLM, Willems J, Coumans WA, Bonen A, Van der Vusse GJ, Glatz JFC (2003b) Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52: 1627–1634

    PubMed  CAS  Google Scholar 

  • Luiken JJFP, Willems J, Van der Vusse GJ, Glatz JFC (2001a) Electrostimulation enhances FAT/CD36-mediated long-chain fatty acid uptake by isolated rat cardiac myocytes. Am J Physiol Endocrinol Metab 281: E704–E712

    PubMed  CAS  Google Scholar 

  • Luiken JJFP, Arumugam Y, Dyck DJ, Bell RC, Pelsers MML, Turcotte LP, Tandon NN, Glatz JFC, Bonen A (2001b) Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in Obese Zucker Rats. J Biol Chem 276: 40567–40573

    PubMed  CAS  Google Scholar 

  • Luiken JJFP, Koonen DPY, Willems J, Zorzano A, Becker C, Fischer Y, Tandon NN, van der Vusse GJ, Bonen A, Glatz JFC (2002) Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes 51: 3113–3119

    PubMed  CAS  Google Scholar 

  • Luiken JJFP, Turcotte LP, Bonen A (1999) Protein-mediated palmitate uptake and expression of fatty acid transport proteins in heart giant vesicles. J Lipid Res 40, 1007-1016

    PubMed  CAS  Google Scholar 

  • Lysiak W, Toth PP, Suelter CH, Bieber LL (1986) Quantitation of the efflux of acylcarnitines from rat-heart, brain, and liver-mitochondria. J Biol Chem 261: 3698–3703

    Google Scholar 

  • Makinde AO, Gamble J, Lopaschuk GD (1997) Upregulation of 5’-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rates following birth in the newborn rabbit. Circ Res 80: 482–489

    PubMed  CAS  Google Scholar 

  • Makinde AO, Kantor PF, Lopaschuk GD (1998) Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Mol Cell Biochem 188: 49–56

    PubMed  CAS  Google Scholar 

  • Marin-Garcia J, Goldenthal MJ (2002) Fatty acid metabolism in cardiac failure: biochemical, genetic and cellular analysis. Cardiovasc Res 54: 516–527

    PubMed  CAS  Google Scholar 

  • McCormack JG, Barr RL, Wolff AA, Lopaschuk GD (1996) Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation 93: 135–42

    PubMed  CAS  Google Scholar 

  • McGarry JD, Brown NF (1997) The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. FEBS Journal 244: 1–14

    CAS  Google Scholar 

  • McGarry JD, Mills SE, Long CS, Foster DW (1983) Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase-I in animal and human-tissues - Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J 214: 21–28

    PubMed  CAS  Google Scholar 

  • Merkel M, Eckel RH, Goldberg IJ (2002a) Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 43: 1997–2006

    PubMed  CAS  Google Scholar 

  • Merkel M, Heeren J, Dudeck W, Rinninger F, Radner H, Breslow JL, Goldberg IJ, Zechner R, Greten H (2002b) Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake. J Biol Chem 277: 7405–7411

    PubMed  Google Scholar 

  • Merkel M, Kako Y, Radner H, Cho IS, Ramasamy R, Brunzell JD, Goldberg IJ, Breslow JL (1998a) Catalytically inactive lipoprotein lipase expression in muscle of transgenic mice increases very low density lipoprotein uptake: Direct evidence that lipoprotein lipase bridging occurs in vivo. Proc Natl Acad Sci USA 95: 13841–13846

    PubMed  CAS  Google Scholar 

  • Merkel M, Weinstock PH, Chajek-Shaul T, Radner H, Yin BY, Breslow JL, Goldberg IJ (1998b) Lipoprotein lipase expression exclusively in liver - A mouse model for metabolism in the neonatal period and during cachexia. J Clin Invest 102: 893–901

    PubMed  CAS  Google Scholar 

  • Mikkelsen J, Knudsen J (1987) Acyl-CoA-binding protein from cow. Binding characteristics and cellular and tissue distribution. Biochem J 248: 709–714

    PubMed  CAS  Google Scholar 

  • Munday MR (2002) Regulation of mammalian acetyl-CoA carboxylase. Biochem Soc Trans 30: 1059–1064

    PubMed  CAS  Google Scholar 

  • Murthy MSR, Pande SV (1987) Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. PNAS 84: 378–382

    PubMed  CAS  Google Scholar 

  • Neely JR, Morgan JE (1974) Relationship between carbohydrate metabolism and energy balance of heart muscle. Ann Rev Physiol 36: 413–459

    CAS  Google Scholar 

  • Neely JR, Whitmer M, Mochizuki S (1976) Effects of mechanical activity and hormones on myocardial glucose and fatty acid utilization. Circ Res 38: I22–I30

    PubMed  CAS  Google Scholar 

  • Niu YG, Hauton D, Evans RD (2004) Utilization of triacylglycerol-rich lipoproteins by the working rat heart: routes of uptake and metabolic fates. J Physiol (Lond) 558: 225–237

    CAS  Google Scholar 

  • Ockner RK, Manning JA, Poppenhausen RB, Ho WK (1972) A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177: 56–58

    PubMed  CAS  Google Scholar 

  • Oliver MF, Opie LH (1994) Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias. Lancet 343: 155–158

    PubMed  CAS  Google Scholar 

  • Olowe Y, Schulz H (1980) Regulation of thiolases from pig heart. Control of fatty acid oxidation in heart. Eur J Biochem 109: 425–429

    PubMed  CAS  Google Scholar 

  • Opie LH (1998) Heart Physiology, From Cell to Circulation, Lippincott-Raven

    Google Scholar 

  • Oram JF, Bennetch SL, Neely JR (1973) Regulation of Fatty Acid Utilization in Isolated Perfused Rat Hearts. J Biol Chem 248: 5299–5309

    PubMed  CAS  Google Scholar 

  • Palou A, Pico C, Bonet ML, Oliver P (1998) The uncoupling protein, thermogenin. Int. J Biochem Cell Biol. 30: 7–11

    PubMed  CAS  Google Scholar 

  • Paulson DJ, Crass MF (1982) Endogenous Triacylglycerol Metabolism in Diabetic Heart. Am J Physiol 242: 1084–1094

    Google Scholar 

  • Pelsers MM, Lutgerink JT, Nieuwenhoven FA, Tandon NN, van der Vusse GJ, Arends JW, Hoogenboom HR, Glatz JF (1999) A sensitive immunoassay for rat fatty acid translocase (CD36) using phage antibodies selected on cell transfectants: abundant presence of fatty acid translocase/CD36 in cardiac and red skeletal muscle and up-regulation in diabetes. Biochem J 337: 407–414

    PubMed  CAS  Google Scholar 

  • Pohl J, Fitscher BA, Ring A, Ihl-Vahl R, Strasser RH, Stremmel W (2000). Fatty acid transporters in plasma membranes of cardiomyocytes in patients with dilated cardiomyopathy. Eur J Med Res 5: 438–442

    PubMed  CAS  Google Scholar 

  • Poirier M, Vincent G, Reszko AE, Bouchard B, Kelleher JK, Brunengraber H, Des Rosiers C (2002) Probing the link between citrate and malonyl-CoA in perfused rat hearts. Am J Physiol Heart Circ Physiol 283: H1379–H1386

    PubMed  CAS  Google Scholar 

  • Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D (1998) Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. Embo J 17: 1688–99

    PubMed  CAS  Google Scholar 

  • Randle PJ (1986). Fuel Selection in Animals. Biochem Soc Trans 14: 799–806

    PubMed  CAS  Google Scholar 

  • Randle PJ, Garland PB, Newsholme EA, Hales CN (1963) Glucose Fatty-Acid Cycle - Its Role in Insulin Sensitivity and Metabolic Disturbances of Diabetes Mellitus. Lancet 1: 785–789

    PubMed  CAS  Google Scholar 

  • Rasmussen JT, Rosendal J, Knudsen J (1993) Interaction of acyl-CoA binding protein (ACBP) on processes for which acyl-CoA is a substrate, product or inhibitor. Biochem J 292: 907–913

    PubMed  CAS  Google Scholar 

  • Reibel DK, Uboh CE, Kent RL (1983) Altered coenzyme A and carnitine metabolism in pressure-overload hypertrophied hearts. Am J Physiol Heart Circ Physiol 244: H839–H843

    CAS  Google Scholar 

  • Reszko AE, Kasumov T, David F, Jobbins KA, Thomas KR, Hoppel CL, Brunengraber H, Rosiers CD (2004) Peroxisomal fatty acid oxidation is a substantial source of the acetyl moiety of malonyl-CoA in rat heart. J Biol. Chem 279: 19574–19579

    PubMed  CAS  Google Scholar 

  • Reszko AE, Kasumov T, Comte B, Pierce BA, David F, Bederman IR, Deutsch J, Des Rosiers C, Brunengraber H (2001) Assay of the concentration and 13C-isotopic enrichment of malonyl-coenzyme A by gas chromatography-mass spectrometry. Anal Biochem 298: 69–75

    PubMed  CAS  Google Scholar 

  • Richieri GV, Kleinfeld AM (1995) Unbound free fatty acid levels in human serum. J Lipid Res 36: 229–240

    PubMed  CAS  Google Scholar 

  • Robyr D, Wolffe AP, Wahli W (2000) Nuclear hormone receptor coregulators in action: Diversity for shared tasks. Mol Endocrinol 14: 329–347

    PubMed  CAS  Google Scholar 

  • Sack MN, Rader TA, Park SH, Bastin J, Mccune SA, Kelly DP (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94: 2837–2842

    PubMed  CAS  Google Scholar 

  • Sacksteder KA, Morrell JC, Wanders RJA, Matalon R, Gould SJ (1999) MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA decarboxylase and is mutated in malonyl-CoA decarboxylase deficiency. J Biol Chem 274: 24461–24468

    PubMed  CAS  Google Scholar 

  • Saddik M, Gamble J, Witters LA, Lopaschuk GD (1993) Acetyl-CoA carboxylase regulation of fatty-acid oxidation in the heart. J Biol Chem 268: 25836–25845

    PubMed  CAS  Google Scholar 

  • Saddik M, Lopaschuk GD (1991) Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 266: 8162–70

    PubMed  CAS  Google Scholar 

  • Saddik M, Lopaschuk GD (1992) Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 267: 3825–31

    PubMed  CAS  Google Scholar 

  • Saddik M, Lopaschuk GD (1994) Triacylglycerol turnover in isolated working hearts of acutely diabetic rats. Can J Physiol Pharmacol 72: 1110–9

    PubMed  CAS  Google Scholar 

  • Saha AK, Schwarsin AJ, Roduit R, Masse F, Kaushik V, Tornheim K, Prentki M, Ruderman NB (2000) Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. J Biol Chem 275: 24279–24283

    PubMed  CAS  Google Scholar 

  • Saha AK, Vavvas D, Kurowski TG, Apazidis A, Witters LA, Shafrir E, Ruderman NB (1997) Malonyl-CoA regulation in skeletal muscle: Its link to cell citrate and the glucose-fatty acid cycle. Am J Physiol Endocrinol Metab 35: E641–E648

    Google Scholar 

  • Sakamoto J, Barr RL, Kavanagh KM, Lopaschuk GD (2000) Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart. Am J Physiol Heart Circ Physiol 278: 1196–204

    Google Scholar 

  • Sambandam N, Lopaschuk GD, Brownsey RW, Allard MF (2002) Energy metabolism in the hypertrophied heart. Heart Fail Rev 7: 161–73

    PubMed  CAS  Google Scholar 

  • Samec S, Seydoux J, Dulloo AG (1998) Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J 12: 715–724

    PubMed  CAS  Google Scholar 

  • Scarpulla RC (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576: 1–14

    PubMed  CAS  Google Scholar 

  • Schaap FG, van der Vusse GJ, Glatz JFC (1998) Fatty acid-binding proteins in the heart. Mol Cell Biochem 180: 43–51

    PubMed  CAS  Google Scholar 

  • Schaffer JE, Lodish HF (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79: 427–436

    PubMed  CAS  Google Scholar 

  • Schaffer JE (2002) Fatty acid transport: the roads taken. Am J Physiol Endocrinol Metab 282: E239–E246

    PubMed  CAS  Google Scholar 

  • Schmider W, Fahr A, Blum HE, Kurz G (2000) Transport of heptafluorostearate across model membranes. Membrane transport of long-chain fatty acid anions I. J. Lipid Res 41: 775–787

    PubMed  CAS  Google Scholar 

  • Schulz H (1991) Beta oxidation of fatty acids. Biochim. Biophys. Acta 1081: 109–120

    PubMed  CAS  Google Scholar 

  • Schulz H (1994) Regulation of Fatty-Acid Oxidation in Heart. J Nutr 124: 165–171

    PubMed  CAS  Google Scholar 

  • Scott JW, Norman DG, Hawley SA, Kontogiannis L, Hardie DG (2002) Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J Mol Biol 317: 309–23

    PubMed  CAS  Google Scholar 

  • Sorrentino D, Stump DD, Van Ness K, Simard A, Schwab AJ, Zhou SL, Goresky CA, Berk PD (1996) Oleate uptake by isolated hepatocytes and the perfused rat liver is competitively inhibited by palmitate. Am J Physiol Gastrointest Liver Physiol 270: G385–G392

    CAS  Google Scholar 

  • Stacpoole PW (1989) The pharmacology of dichloroacetate. Metabolism 38: 1124–1144

    PubMed  CAS  Google Scholar 

  • Stanley WC, Lopaschuk GD, Kivilo KM (1999) Alterations in myocardial energy metabolism in streptozotocin diabetes. In: Experimental Models of Diabetes, ed. M.N.JH CRC Press, 19–38

    Google Scholar 

  • Stanley WC, Chandler MP (2002) Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev 7: 115–30

    PubMed  CAS  Google Scholar 

  • Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33: 243–57

    PubMed  CAS  Google Scholar 

  • Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85: 1093–129

    PubMed  CAS  Google Scholar 

  • Stanley W C, Hernandez LA, Spires D, Bringas J, Wallace S, McCormack JG (1996) Pyruvate dehydrogenase activity and malonyl CoA levels in normal and ischemic swine myocardium: Effects of dichloroacetate. J Mol Cell Cardiol 28: 905–914

    PubMed  CAS  Google Scholar 

  • Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp BE (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271: 611–4

    PubMed  CAS  Google Scholar 

  • Stavinoha MA, RaySpellicy JW, Essop MF, Graveleau C, Abel ED, Hart-Sailors M L, Mersmann HJ, Bray MS, Young ME (2004) Evidence for mitochondrial thioesterase 1 as a peroxisome proliferator-activated receptor-alpha-regulated gene in cardiac and skeletal muscle. Am J Physiol Endocrinol Metab 287: E888–E895

    PubMed  CAS  Google Scholar 

  • Sterling D, Casey JR (2002) Bicarbonate transport proteins. Biochem Cell Biol 80: 483–497

    PubMed  CAS  Google Scholar 

  • Storch J, Lechene C, Kleinfeld AM (1991) Direct determination of free fatty acid transport across the adipocyte plasma membrane using quantitative fluorescence microscopy. J Biol Chem 266: 13473–13476

    PubMed  CAS  Google Scholar 

  • Storch J, Thumser AEA (2000) The fatty acid transport function of fatty acid-binding proteins. Biochim Biophys Acta 1486: 28–44

    PubMed  CAS  Google Scholar 

  • Strauss AW, Powell CK, Hale DE, Anderson MM, Ahuja A, Brackett JC, Sims HF (1995) Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. PNAS 92: 10496–10500

    PubMed  CAS  Google Scholar 

  • Stremmel W, Berk PD (1986) Hepatocellular influx of [14C]oleate reflects membrane transport rather than intracellular metabolism or binding. PNAS 83: 3086–3090

    PubMed  CAS  Google Scholar 

  • Stremmel W, Strohmeyer G, Borchard F, Kochwa S, Berk PD (1985) Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. PNAS 82: 4–8

    PubMed  CAS  Google Scholar 

  • Taegtmeyer H, Overturf ML (1988) Effects of moderate hypertension on cardiac function and metabolism in the rabbit. Hypertension 11: 416–426

    PubMed  CAS  Google Scholar 

  • Takahashi S, Kawarabayasi Y, Nakai T, Sakai J, Yamamoto T (1992) Rabbit very low density lipoprotein receptor: A low density lipoprotein density receptor-like protein with distinct ligand specificity. PNAS 89: 9252–9256

    PubMed  CAS  Google Scholar 

  • Tanaka K, Yokota I, Coates PM, Strauss AW, Kelly DP, Zhang Z, Gregersen N, Andresen BS, Matsubara Y, Curtis D, (1992) Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene. Hum Mutat 1: 271–279

    PubMed  CAS  Google Scholar 

  • Thampy KG (1989) Formation of Malonyl Coenzyme-A in Rat-Heart - Identification and purification of an isozyme of acetyl-coenzyme-A carboxylase from rat-heart. J Biol Chem. 264: 17631–17634

    PubMed  CAS  Google Scholar 

  • Thornton C, Snowden MA, Carling D (1998) Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J Biol Chem 273: 12443–50

    PubMed  CAS  Google Scholar 

  • Turcotte LP, Swenberger JR, Tucker MZ, Yee AJ, Trump G, Luiken JJ, Bonen A (2000) Muscle palmitate uptake and binding are saturable and inhibited by antibodies to FABP(PM). Mol Cell Biochem 210: 53–63

    PubMed  CAS  Google Scholar 

  • Turcotte LP, Srivastava AK, Chiasson JL (1997) Fasting increases plasma membrane fatty acid-binding protein (FABPPM) in red skeletal muscle. Mol Cell Biochem 166: 153–158

    PubMed  CAS  Google Scholar 

  • Uchiyama A, Aoyama T, Kamijo K, Uchida Y, Kondo N, Orii T, Hashimoto T (1996) Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. J Biol Chem 271: 30360–30365

    PubMed  CAS  Google Scholar 

  • Van der Vusse GJ, van Bilsen M, Glatz JFC (2000) Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res 45: 279–293

    PubMed  Google Scholar 

  • Vannieuwenhoven FA, Verstijnen CPHJ, Abumrad NA, Willemsen PHM, Vaneys GJJM, Vandervusse GJ, Glatz JFC (1995) Putative membrane fatty acid translocase and cytoplasmic fatty-acid-binding protein are co-expressed in rat heart and skeletal muscles. Biochem Biophys Res Commun 207: 747–752

    CAS  Google Scholar 

  • Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20: 1868–1876

    PubMed  CAS  Google Scholar 

  • Waku K (1992) Origins and fates of fatty acyl-CoA esters. Biochim Biophys Acta 1124: 101–111

    PubMed  CAS  Google Scholar 

  • Wall SR, Lopaschuk GD (1989) Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Biochim Biophys Acta 1006: 97–103

    PubMed  CAS  Google Scholar 

  • Weis BC, Cowan AT, Brown N, Foster D W, McGarry JD (1994) Use of a selective inhibitor of liver carnitine palmitoyltransferase-I (Cpt-I) allows quantification if its contribution to total CPT-I activity in rat-heart - evidence that the dominant cardiac CPT-I isoform is identical to the skeletal-muscle enzyme. J Biol Chem 269: 26443–26448

    PubMed  CAS  Google Scholar 

  • Widmer J, Fassihi KS, Schlichter SC, Wheeler KS, Crute BE, King N, Nutile-McMenemy N, Noll WW, Daniel S, Ha J, Kim KH, Witters LA (1996) Identification of a second human acetyl-CoA carboxylase gene. Biochem J 316: 915–922

    PubMed  CAS  Google Scholar 

  • Wisneski JA, Gertz EW, Neese RA, Mayr M (1987) Myocardial-Metabolism of Free Fatty-Acids - Studies with 14C-labeled substrates in humans. J Clin Invest 79: 359–366

    PubMed  CAS  Google Scholar 

  • Yagyu H, Chen GP, Yokoyama M, Hirata K, Augustus A, Kako Y, Seo T, Hu YY, Lutz EP, Merkel M, Bensadoun A, Homma S, Goldberg IJ (2003) Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest 111: 419–426

    PubMed  Google Scholar 

  • Yano S, Sweetman L, Thorburn DR, Mofidi S, Williams JC (1997) A new case of malonyl coenzyme A decarboxylase deficiency presenting with cardiomyopathy. Eur J Pediatr 156: 382–383

    PubMed  CAS  Google Scholar 

  • Yokoyama M, Yagyu H, Hu YY, Seo T, Hirata K, Homma S, Goldberg IJ (2004) Apolipoprotein B production reduces lipotoxic cardiomyopathy - Studies in heart-specific lipoprotein lipase transgenic mouse. J Biol Chem 279: 4204–4211

    PubMed  CAS  Google Scholar 

  • Young, ME, McNulty P, Taegtmeyer H (2002) Adaptation and maladaptation of the heart in diabetes: Part II - Potential mechanisms. Circulation 105: 1861–1870

    PubMed  CAS  Google Scholar 

  • Zammit VA, Fraser F, Orstorphine CG (1997) Regulation of mitochondrial outer-membrane carnitine palmitoyltransferase (CPT I): Role of membrane-topology. Adv Enzyme Regul 37: 295–317

    PubMed  CAS  Google Scholar 

  • Zhou SL, Stump D, Isola L, Berk PD (1994) Constitutive expression of a saturable transport system for non-esterified fatty acids in Xenopus laevis oocytes. Biochem J 297: 315–319

    PubMed  CAS  Google Scholar 

  • Zhou SL, Stump D, Sorrentino D, Potter BJ, Berk PD (1992) Adipocyte differentiation of 3T3-L1 cells involves augmented expression of a 43-kDa plasma membrane fatty acid-binding protein. J Biol Chem 267: 14456–14461

    PubMed  CAS  Google Scholar 

  • Zhou, S. L., Stump, D, Sorrentino, D, Potter, B J, and Berk, P D (1992). Adipocyte differentiation of 3T3-L1 cells involves augmented expression of a 43-kDa plasma membrane fatty acid-binding protein. J. Biol. Chem. 267, 14456-14461

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Folmes, C.D.L., Lopaschuk, G.D. (2007). Regulation of Fatty Acid Oxidation of the Heart. In: Schaffer, S.W., Suleiman, MS. (eds) Mitochondria. Advances in Biochemistry in Health and Disease, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69945-5_2

Download citation

Publish with us

Policies and ethics