Skip to main content

Miglustat Treatment May Reduce Cerebrospinal Fluid Levels of the Axonal Degeneration Marker Tau in Niemann–Pick Type C

  • Research Report
  • Chapter
  • First Online:
Book cover JIMD Reports - Case and Research Reports, 2011/3

Abstract

Introduction: Niemann–Pick disease type C (NPC) is a lysosomal storage disorder that leads to progressive neurodegeneration. The glucosylceramide synthase blocker miglustat is being used to treat NPC, but monitoring of disease progression and treatment response is difficult. NPC patients have elevated cerebrospinal fluid (CSF) levels of total-tau (T-tau) indicating axonal degeneration, and increased CSF amyloid β (Aβ) indicating abnormal brain amyloid metabolism, but it is unknown if start of miglustat treatment affects these biomarker levels.

Methods: Biomarkers were measured in serial CSF samples from NPC patients who started miglustat between samplings (N=5), were untreated at both samplings (N=5) or received treatment during the whole study (N=6) (median time between samplings 309 days [range 175–644]). CSF was analyzed for Aβ38, Aβ40, Aβ42, α-cleaved soluble APP, β-cleaved soluble APP, T-tau and phospho-tau.

Results: T-tau levels decreased in patients who started miglustat treatment (median 955 [range 338–1,271]ng/L at baseline vs. 382 [187–736]ng/L at follow-up, p=0.043). Untreated patients and continuously treated patients had stable levels (p>0.05). No changes were seen in the other biomarkers.

Conclusion: Reduced CSF T-tau suggests that miglustat treatment might affect axonal degeneration in NPC. However, the results must be interpreted with caution and verified in future studies, since this pilot study was small, treatment was not randomized, and patients starting treatment had higher baseline CSF T-tau than untreated patients.

Competing interests: None declared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreasson U, Portelius E, Andersson ME, Blennow K, Zetterberg H (2007) Aspects of beta-amyloid as a biomarker for Alzheimer’s disease. Biomarkers Med 1:59–78

    Article  CAS  Google Scholar 

  • Blennow K, Zetterberg H, Minthon L et al (2007) Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neurosci Lett 419:18–22

    Article  PubMed  CAS  Google Scholar 

  • Galanaud D, Tourbah A, Lehericy S et al (2009) 24 month-treatment with miglustat of three patients with Niemann-Pick disease type C: follow up using brain spectroscopy. Mol Genet Metab 96:55–8

    Article  PubMed  CAS  Google Scholar 

  • Gilman S, Koller M, Black RS et al (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–62

    Article  PubMed  CAS  Google Scholar 

  • Grimm MO, Grimm HS, Hartmann T (2007) Amyloid beta as a regulator of lipid homeostasis. Trends Mol Med 13:337–44

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, Blennow K, Shaw LM, Hoessler YC, Zetterberg H, Trojanowski JQ (2009) Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol 45:30–40

    Article  PubMed  Google Scholar 

  • Hesse C, Rosengren L, Andreasen N et al (2001) Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett 297:187–90

    Article  PubMed  CAS  Google Scholar 

  • Hirsch-Reinshagen V, Burgess BL, Wellington CL (2009) Why lipids are important for Alzheimer disease? Mol Cell Biochem 326:121–9

    Article  PubMed  CAS  Google Scholar 

  • Imrie J, Dasgupta S, Besley GT et al (2007) The natural history of Niemann-Pick disease type C in the UK. J Inherit Metab Dis 30:51–9

    Article  PubMed  CAS  Google Scholar 

  • Jin LW, Shie FS, Maezawa I, Vincent I, Bird T (2004) Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol 164:975–85

    Article  PubMed  CAS  Google Scholar 

  • Kagedal K, Kim WS, Appelqvist H et al (2010) Increased expression of the lysosomal cholesterol transporter NPC1 in Alzheimer’s disease. Biochim Biophys Acta 1801:831–8

    Article  PubMed  CAS  Google Scholar 

  • Kodam A, Maulik M, Peake K et al (2010) Altered levels and distribution of amyloid precursor protein and its processing enzymes in Niemann-Pick type C1-deficient mouse brains. Glia 58:1267–81

    Article  PubMed  CAS  Google Scholar 

  • Kosicek M, Malnar M, Goate A, Hecimovic S (2010) Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts. Biochem Biophys Res Commun 393:404–9

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Yu WH, Kumar A et al (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146–58

    Article  PubMed  CAS  Google Scholar 

  • Liu RQ, Zhou QH, Ji SR et al (2010) Membrane localization of beta-amyloid 1–42 in lysosomes: a possible mechanism for lysosome labilization. J Biol Chem 285:19986–96

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Evans E, Platt FM (2010) Lipids on trial: the search for the offending metabolite in Niemann-Pick type C disease. Traffic 11:419–28

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen A, Samosh J, Vandewark K et al (2010) Rapid and direct transport of cell surface APP to the lysosome defines a novel selective pathway. Mol Brain 3:11

    Article  PubMed  Google Scholar 

  • Malnar M, Kosicek M, Mitterreiter S et al (2010) Niemann-Pick type C cells show cholesterol dependent decrease of APP expression at the cell surface and its increased processing through the beta-secretase pathway. Biochim Biophys Acta 1802:682–91

    Article  PubMed  CAS  Google Scholar 

  • Mattsson N, Savman K, Osterlundh G, Blennow K, Zetterberg H (2010) Converging molecular pathways in human neural development and degeneration. Neurosci Res 66:330–2

    Article  PubMed  CAS  Google Scholar 

  • Mattsson N, Zetterberg H, Bianconi S et al (2011) Gamma-secretase-dependent amyloid-beta is increased in Niemann-Pick type C: a cross-sectional study. Neurology 76:366–72

    Article  PubMed  CAS  Google Scholar 

  • Naureckiene S, Sleat DE, Lackland H et al (2000) Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290:2298–301

    Article  PubMed  CAS  Google Scholar 

  • Olsson A, Vanderstichele H, Andreasen N et al (2005) Simultaneous measurement of beta-amyloid(1–42), total tau, and phosphorylated tau (Thr181) in cerebrospinal fluid by the xMAP technology. Clin Chem 51:336–45

    Article  PubMed  CAS  Google Scholar 

  • Ory DS (2004) The niemann-pick disease genes; regulators of cellular cholesterol homeostasis. Trends Cardiovasc Med 14:66–72

    Article  PubMed  CAS  Google Scholar 

  • Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE (2007) Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol 6:765–72

    Article  PubMed  CAS  Google Scholar 

  • Patterson MC, Vecchio D, Jacklin E et al (2010) Long-term miglustat therapy in children with Niemann-Pick disease type C. J Child Neurol 25:300–5

    Article  PubMed  Google Scholar 

  • Pentchev PG, Comly ME, Kruth HS et al (1987) Group C Niemann-Pick disease: faulty regulation of low-density lipoprotein uptake and cholesterol storage in cultured fibroblasts. FASEB J 1:40–5

    PubMed  CAS  Google Scholar 

  • Pineda M, Wraith JE, Mengel E et al (2009) Miglustat in patients with Niemann-Pick disease Type C (NP-C): a multicenter observational retrospective cohort study. Mol Genet Metab 98:243–9

    Article  PubMed  CAS  Google Scholar 

  • Platt FM, Lachmann RH (2009) A new surrogate marker for CNS pathology in Niemann-Pick disease type C? Mol Genet Metab 96:53–4

    Article  PubMed  CAS  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–44

    Article  PubMed  CAS  Google Scholar 

  • Sevin M, Lesca G, Baumann N et al (2007) The adult form of Niemann-Pick disease type C. Brain 130:120–33

    Article  PubMed  Google Scholar 

  • Vanier MT, Millat G (2003) Niemann-Pick disease type C. Clin Genet 64:269–81

    Article  PubMed  CAS  Google Scholar 

  • Wraith JE, Baumgartner MR, Bembi B et al (2009) Recommendations on the diagnosis and management of Niemann-Pick disease type C. Mol Genet Metab 98:152–65

    Article  PubMed  CAS  Google Scholar 

  • Wraith JE, Vecchio D, Jacklin E et al (2010) Miglustat in adult and juvenile patients with Niemann-Pick disease type C: long-term data from a clinical trial. Mol Genet Metab 99:351–7

    Article  PubMed  CAS  Google Scholar 

  • Yanjanin NM, Velez JI, Gropman A et al (2010) Linear clinical progression, independent of age of onset, in Niemann-Pick disease, type C. Am J Med Genet B Neuropsychiatr Genet 153B:132–40

    PubMed  Google Scholar 

  • Yerushalmi B, Sokol RJ, Narkewicz MR, Smith D, Ashmead JW, Wenger DA (2002) Niemann-pick disease type C in neonatal cholestasis at a North American Center. J Pediatr Gastroenterol Nutr 35:44–50

    Article  PubMed  Google Scholar 

  • Zachrisson OC, Balldin J, Ekman R et al (2000) No evident neuronal damage after electroconvulsive therapy. Psychiatry Res 96:157–65

    Article  PubMed  CAS  Google Scholar 

  • Zervas M, Dobrenis K, Walkley SU (2001a) Neurons in Niemann-Pick disease type C accumulate gangliosides as well as unesterified cholesterol and undergo dendritic and axonal alterations. J Neuropathol Exp Neurol 60:49–64

    PubMed  CAS  Google Scholar 

  • Zervas M, Somers KL, Thrall MA, Walkley SU (2001b) Critical role for glycosphingolipids in Niemann-Pick disease type C. Curr Biol 11:1283–7

    Article  PubMed  CAS  Google Scholar 

  • Zetterberg H, Hietala MA, Jonsson M et al (2006) Neurochemical aftermath of amateur boxing. Arch Neurol 63:1277–80

    Article  PubMed  Google Scholar 

  • Zetterberg H, Pedersen M, Lind K et al (2007) Intra-individual stability of CSF biomarkers for Alzheimer’s disease over two years. J Alzheimers Dis 12:255–60

    PubMed  CAS  Google Scholar 

  • Zetterberg H, Blennow K, Hanse E (2010) Amyloid beta and APP as biomarkers for Alzheimer’s disease. Exp Gerontol 45:23–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Åsa Källén, Monica Christiansson, Sara Hullberg and Dzemila Secic for excellent technical assistance. We are grateful to Mrs. Chris Hempel for her support of this study. We wish to thank the caretakers and patients for their participation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Communicated by: Robert Steiner.

Appendices

Synopsis

Cerebrospinal fluid levels of the axonal degeneration marker tau may decrease after start of miglustat treatment in Niemann–Pick type C.

Disclosures

This study was funded with grants from the Swedish Research Council (projects 14002, 2006–6227, 2006–2740 and 2006–3505), the Alzheimer’s Association (NIRG-08-90356), cNEUPRO, the Royal Swedish Academy of Sciences, Sahlgrenska University Hospital, the Söderberg Foundation, the Lundbeck Foundation, the Gothenburg Medical Society, the Swedish Medical Society, Swedish Brain Power, Stiftelsen Gamla Tjänarinnor, Gun och Bertil Stohnes stiftelse, Åhlén-stiftelsen, Alzheimer Foundation, Sweden, The Dementia Association, Sweden, a Bench to Bedside grant from the NIH Office of Rare Diseases, Therapeutics for Rare and Neglected Diseases program, and the intramural research program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

Dr Henrik Zetterberg has participated in an advisory board for GlaxoSmithKline.

Nicole M Yanjanin’s position has been supported by the Ara Parseghian Medical Research Foundation and Dana’s Angels Research Trust.

Dr Kaj Blennow has participated in an advisory board for Innogenetics.

Dr Niklas Mattsson has participated in an advisory board for Actelion Inc.

Dr Simona Bianconi reports no disclosures.

Dr Jan-Eric Månsson reports no disclosures.

Rao Fu reports no disclosures.

Dr Forbes D. Porter reports no disclosures.

Author Contributions

NM, KB, HZ and FP designed the study. SB, NY and FP established the clinical protocol, managed patients and collected samples. RF performed genotyping. NM analyzed the data and performed the statistical analysis. All authors participated in the interpretation of the data. NM drafted the manuscript and all other authors revised the manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mattsson, N. et al. (2011). Miglustat Treatment May Reduce Cerebrospinal Fluid Levels of the Axonal Degeneration Marker Tau in Niemann–Pick Type C. In: JIMD Reports - Case and Research Reports, 2011/3. JIMD Reports, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2011_47

Download citation

  • DOI: https://doi.org/10.1007/8904_2011_47

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24935-8

  • Online ISBN: 978-3-642-24936-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics