Skip to main content

A Practical Guide to Recombineering in Photorhabdus and Xenorhabdus

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 402))

Abstract

Fluent genetic manipulation of prokaryote genomes is still limited to only a few commonly used hosts. Ideally the advanced technologies available for cloning into recombinant Escherichia coli should also be applicable in other prokaryotes. In particular, ‘recombineering’ is mediated by the lambda Red operon that permits fluent and precise engineering of the E. coli genome and associated recombinant DNA. The major limitation is that host-specific phage-derived recombination systems are also required in more distant species. Recently, an endogenous Red-like operon Pluγβα has been reported to be effective in both Photorhabdus and Xenorhabdus bacteria. The Pluγβα recombineering system is based on three host-specific phage proteins from Photorhabdus luminescens, Plu2935, Plu2936, and Plu2934, which are functional analogs of Redβ, Redα, and Redγ, respectively. In this chapter, we provide a comprehensive and up-to-date method for P. luminescens and Xenorhabdus stockiae genome engineering via the Pluγβα recombineering system. In order to facilitate the rapid construction of knock-in vectors, recET-mediated recombineering is incorporated in the pipeline. Concerted recET system in E. coli with Pluγβα system in Photorhabdus and Xenorhabdus could promote reverse genetics, functional genomics, and bioprospecting research for these two genera.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Balbás P, Gosset G (2001) Chromosomal editing in Escherichia coli. Mol Biotechnol 19(1):1–12

    Article  PubMed  Google Scholar 

  • Bao Z, Cartinhour S, Swingle B (2012) Substrate and target sequence length influence RecTEPsy recombineering efficiency in Pseudomonas syringae. PLoS ONE 7(11):e50617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian X, Huang F, Stewart FA, Xia L, Zhang Y, Müller R (2012a) Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering. ChemBioChem 13(13):1946–1952

    Article  CAS  PubMed  Google Scholar 

  • Bian X, Plaza A, Zhang Y, Müller R (2012b) Luminmycins A-C, cryptic natural products from Photorhabdus luminescens identified by heterologous expression in Escherichia coli. J Nat Prod 75(9):1652–1655

    Article  CAS  PubMed  Google Scholar 

  • Bode HB, Brachmann AO, Jadhav KB, Seyfarth L, Dauth C, Fuchs SW, Kaiser M, Waterfield NR, Sack H, Heinemann SH, Arndt H-D (2015) Structure elucidation and activity of Kolossin A, the D-/L-pentadecapeptide product of a giant nonribosomal peptide synthetase. Angew Chem Int Ed 54(35):10352–10355

    Article  CAS  Google Scholar 

  • Brachmanna AO, Kirchnera F, Keglera C, Kinskia SC, Schmittb I, Bode HB (2012) Triggering the production of the cryptic blue pigment indigoidine from Photorhabdus luminescens. J Biotechnol 157(1):96–99

    Article  Google Scholar 

  • Bunny K, Liu J, Roth J (2002) Phenotypes of lexA mutations in Salmonella enterica: evidence for a lethal lexA null phenotype due to the Fels-2 prophage. J Bacteriol 184(22):6235–6249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter DM, Radding CM (1971) The role of exonuclease and β protein of phage λ in genetic recombination: II. Substrate specificity and the mode of action of λ exonuclease. J Biol Chem 246(8):2502–2512

    CAS  PubMed  Google Scholar 

  • Chandran S, Noskov VN, Segall-Shapiro TH, Ma L, Whiteis C, Lartigue C, Jores J, Vashee S, Chuang R-Y (2014) TREC-IN: gene knock-in genetic tool for genomes cloned in yeast. BMC Genom 15:1–11

    Article  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derbise A, Lesic B, Dacheux D, Ghigo JM, Carniel E (2003) A rapid and simple method for inactivating chromosomal genes in Yersinia. FEMS Immunol Med Microbiol 38(2):113–116

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Tao W, Gong F, Li Y, Zhang Y (2013) A functional recT gene for recombineering of clostridium. J Biotechnol 173:65–67

    Article  PubMed  Google Scholar 

  • Frank B, Michael B (2001) LoxP-directed cloning: use of Cre recombinase as a universal restriction enzyme. Biotechniques 31(4):906–908

    Google Scholar 

  • Fu J, Bian X, Hu S, Wang H, Huang F, Seibert PM, Plaza A, Xia L, Müller R, Stewart AF, Zhang Y (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30:440–446

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Teucher M, Anastassiadis K, Skarnes W, Stewart AF (2010) Chapter eight—a recombineering pipeline to make conditional targeting constructs. In: Paul MW, Philippe MS (eds) Methods in enzymology, vol 477. Academic Press, Cambridge, pp 125–144

    Google Scholar 

  • Glaeser A, Heermann R (2015) A novel tool for stable genomic reporter gene integration to analyze heterogeneity in Photorhabdus luminescens at the single-cell level. Biotechniques 59(2):74–81

    Article  CAS  PubMed  Google Scholar 

  • Gross F, Ring MW, Perlova O, Fu J, Schneider S, Gerth K, Kuhlmann S, Stewart AF, Zhang Y, Muller R (2006) Metabolic engineering of Pseudomonas putida for methylmalonyl-CoA biosynthesis to enable complex heterologous secondary metabolite formation. Chem Biol 13(12):1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Guzman L-M, Belin D, Carson M, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177(14):4121–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto-Gotoh T, Sekiguchi M (1977) Mutations to temperature sensitivity in R plasmid pSC101. J Bacteriol 131(2):405–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu S, Fu J, Huang F, Ding X, Stewart AF, Xia L, Zhang Y (2014) Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system. Appl Environ Microbiol 98(5):2165–2172

    CAS  Google Scholar 

  • Kang Y, Norris MH, Wilcox BA, Tuanyok A, Keim PS, Hoang TT (2011) Knockout and pullout recombineering for naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei. Nat Protocols 6(8):1085–1104

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Hisano Y, Kawahara A, S Higashijima (2014) Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 4:6545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lango L, Clarke DJ (2010) A metabolic switch is involved in lifestyle decisions in Photorhabdus luminescens. Mol Microbiol 77(6):1394–1405

    Article  CAS  PubMed  Google Scholar 

  • Li D, Liu J, Guo B, Liang C, Dang L, Lu C, He X, Cheung HY-S, Xu L, Lu C, He B, Liu B, Shaikh AB, Li F, Wang L, Yang Z, Au DW-T, Peng S, Zhang Z, Zhang B-T, Pan X, Qian A, Shang P, Xiao L, Jiang B, Wong CK-C, Xu J, Bian Z, Liang Z, D Guo, Zhu H, Tan W, Lu A, Zhang G (2016) Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun 7:10872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Thomason LC, Sawitzke JA, Costantino N, Court DL (2013) Bacterial DNA polymerases participate in oligonucleotide recombination. Mol Microbiol 88(5):906–920

    Article  CAS  PubMed  Google Scholar 

  • Little JW (1967) An exonuclease induced by bacteriophage λ II. Nature of the enzymatic reaction. J Biol Chem 242(4):679–686

    CAS  PubMed  Google Scholar 

  • Liu J, Berry R, Poinar G, Moldenke A (1997) Phylogeny of Photorhabdus and Xenorhabdus species and strains as determined by comparison of partial 16S rRNA gene sequences. Int J Syst Evol Microbiol 47(4):948–951

    CAS  Google Scholar 

  • Muyrers JPP, Zhang Y, Testa G, Stewart AF (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27(6):1555–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poteete AR (2013) Involvement of Escherichia coli DNA replication proteins in phage lambda red-mediated homologous recombination. PLoS ONE 8(6):e67440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainey FA, Stackebrandt E (1995) Inability of the polyphasic approach to systematics to determine the relatedness of the genera Xenorhabdus and Photorhabdus. Int J Syst Bacteriol 45(2):379–381

    Article  CAS  PubMed  Google Scholar 

  • Sektas M, Specht M (2005) Limited use of the Cre/loxP recombination system in efficient production of loxP-containing minicircles in vivo. Plasmid 53(2):148–163

    Article  CAS  PubMed  Google Scholar 

  • Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ, K Kim, Clardy J, Ciche TA (2012) A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science 337(6090):88–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Deng A, Hu T, Wu J, Sun Q, Bai H, Zhang G, Wen T (2015) A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Appl Environ Microbiol 99(12):5151–5162

    CAS  Google Scholar 

  • Tang Z, Zhang Y, Stewart AF, Geng M, Tang X, Tu Q, Yin Y (2010) High-level expression, purification and antibacterial activity of bovine lactoferricin and lactoferrampin in Photorhabdus luminescens. Protein Expr Purif 73(2):132–139

    Article  CAS  PubMed  Google Scholar 

  • Van Kessel JC, Hatfull GF (2006) Recombineering in Mycobacterium tuberculosis. Nat Methods 4(2):147–152

    Article  PubMed  Google Scholar 

  • Van Kessel JC, Hatfull GF (2008) Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 67(5):1094–1107

    Article  PubMed  Google Scholar 

  • van Pijkeren J-P, Britton RA (2012) High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res 40(10):e76

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Bian X, Xia L, Ding X, Müller R, Zhang Y, Fu J, Stewart AF (2014) Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res 42(5):e37

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Mol Biol Rev 51(2):221–271

    CAS  Google Scholar 

  • Yang P, Wang J, Qi Q (2015) Prophage recombinases-mediated genome engineering in Lactobacillus plantarum. Microbial Cell Fact 14(1):1–11. z

    Google Scholar 

  • Yin J, Hoffmann M, Bian X, Tu Q, Yan F, Xia L, Ding X, Francis Stewart A, Müller R, Fu J, Zhang Y (2015a) Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 in Streptomyces coelicolor A3(2). Sci Rep 5:15081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin J, Zhu H, Xia L, Ding X, Hoffmann T, Hoffmann M, Bian X, Müller R, Fu J, Stewart AF, Zhang Y (2015b) A new recombineering system for Photorhabdus and Xenorhabdus. Nucleic Acids Res 43(6):e36

    Article  PubMed  Google Scholar 

  • Zhang Y, Buchholz F, Muyrers JPP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Muyrers JPP, Testa G, Stewart AF (2000) DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol 18(12):1314–1317

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Fu or Youming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Yin, J. et al. (2016). A Practical Guide to Recombineering in Photorhabdus and Xenorhabdus . In: ffrench-Constant, R. (eds) The Molecular Biology of Photorhabdus Bacteria . Current Topics in Microbiology and Immunology, vol 402. Springer, Cham. https://doi.org/10.1007/82_2016_57

Download citation

Publish with us

Policies and ethics