Skip to main content

Abstract

A fundamental paradox of classical physics is why matter, which is held together by Coulomb forces, does not collapse. The resolution is given here in three steps. First, the stability of atom is demonstrated, in the framework of nonrelativistic quantum mechanics. Next the Pauli principle, together with some facts about Thomas-Fermi theory, is shown, to account for the stability (i.e., saturation) of bulk matter. Thomas-Fermi theory is developed in some detail because, as is also pointed out, it is the asymptotically correct picture of heavy atoms and molecules (in the Zā†’āˆž limit). Finally, a rigorous version of screening is introduced to account for thermodynamic stability.

Work partially supported by U. S. National Science Foundation grant MCS 75-21684.

Work partially supported by U.S. National Science Foundation grant MCS 75-21684.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BalĆ zs, N., 1967, ā€œFormation of stable molecules within the statistical theory of atoms,ā€ Phys. Rev. 156, 42ā€“47.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Barnes, J. F., 1975, private communicatiou.

    Google ScholarĀ 

  • Birman, M. S., 1961, Mat. Sb. 55 (97), 125ā€“174 [ā€œThe spectrum of singular boundary value problems,ā€ Am. Math. Soc. Transl. Ser. 2 53, 23ā€“80 (1966)].

    MATHĀ  MathSciNetĀ  Google ScholarĀ 

  • Dirac, P. A. M., 1930, ā€œNote on exchange phenomena in the Thomas atom,ā€ Proc. Camb, Phil. Soc. 26, 376ā€“385.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Dyson, F. J., 1967, ā€œGround-state energy of a finite System of charged particles,ā€ J. Math. Phys. 8, 1538ā€“1545.

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Dyson, F. J., and A. Lenard, 1967, ā€œStability of matter. I.ā€ J. Math. Phys. 8, 423ā€“434.

    ArticleĀ  MATHĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Fermi, E., 1927, ā€œUn metodo statistico per la determinazione di alcune prioretĆ  dellā€™atome,ā€ Rend. Acad. Naz. Lincei 6, 602ā€“607.

    Google ScholarĀ 

  • Fock, V., 1930, ā€œNƤherungsmethode zur Lƶsung des quanten-mechanischen Mehrkƶrperproblems,ā€ Z. Phys. 61, 126ā€“148; see also V. Fock, 1930, ā€œSelfconsistent fieldā€ mit austausch fĆ¼r Natrium,ā€ Phys. 62, 795ā€“805.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • GombĆ”s, P., 1949, Die statistischen Theorie des Atomes und. ihre Anwendungen (Springer Verlag, Berlin).

    Google ScholarĀ 

  • Hartree, D. R., 1927ā€“1928, ā€œThe wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods,ā€ Proc. Camb. Phil. Soc. 24, 89ā€“110.

    ArticleĀ  Google ScholarĀ 

  • Heisenberg, W., 1927, ā€œĆœber den anschaulichen Inhalt der quanten-theoretischen Kinematik und Mechanik,ā€ Z. Phys. 43, 172ā€“198.

    ArticleĀ  MATHĀ  ADSĀ  Google ScholarĀ 

  • Jeans, J. H., 1915, The Mathematical Theory of Electricity and Magnetism (Cambridge University, Cambridge) 3rd ed., p. 168.

    Google ScholarĀ 

  • Kato, T., ā€œFundamental properties of Hamiltonian operators of Schrƶdinger type,ā€ Trans. Am. Math. Soc. 70, 195ā€“211.

    Google ScholarĀ 

  • Kirzhnits, D. A., 1957, J. Exptl. Theoret. Phys. (USSR) 32, 115ā€“123 [Engl. transl. ā€œQuantum corrections to the Thomas-Fermi equation,ā€ Sov. Phys. JETP 5, 64ā€“71 (1957)].

    MATHĀ  Google ScholarĀ 

  • Kompaneets, A. S., and E. S. Pavlovskii, 1956, J. Exptl. Theoret. Phys. (USSR) 31, 427ā€“438 [Engl. transl. ā€œThe self-consistent field equations in an atom,ā€ Sov. Phys. JETP 4, 328ā€“336 (1957)].

    Google ScholarĀ 

  • Lenard, A., and F. J. Dyson, 1968, ā€œStability of matter. II,ā€ J. Math. Phys. 9, 698ā€“711.

    ArticleĀ  MATHĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Lenz, W., 1932, ā€œĆœber die Anwendbarkeit der statistischen Methode auf lonengitter,ā€ Z. Phys. 77, 713ā€“721.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Lieb, E. H., 1976, ā€œBounds on the eigenvalues of the Laplace and Schrƶdinger operators,ā€ Bull. Am. Math. Soc, in press.

    Google ScholarĀ 

  • Lieb, E. H., and J. L. Lebowitz, 1972, ā€œThe constitution of matter: existence of thermodynamics for Systems composed of electrons and nuclei,ā€ Adv. Math. 9, 316ā€“398. See also J. L. Lebowitz and E. H. Lieb, 1969, ā€œExistence of thermo-dynamics for real matter with Coulomb forces,ā€ Phys. Rev. Lett. 22, 631ā€“634.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  • Lieb, E. H., and H. Narnhofer, 1975, ā€œThe thermodynamic limit for jellium,ā€ J. Stat. Phys. 12, 291ā€“310; Erratum: J. Stat. Phys. 14, No. 5 (1976).

    ArticleĀ  MathSciNetĀ  ADSĀ  Google ScholarĀ 

  • Lieb, E. H., and B. Simon, ā€œOn solutions to the Hartree-Fock problem for atoms and molecules,ā€ J. Chem. Phys. 61, 735ā€“736. Also, a longer paper in preparation.

    Google ScholarĀ 

  • Lieb, E. H., and B. Simon, 1977, ā€œThe Thomas-Fermi theory of atoms, molecules and solids,ā€ Adv. Math., in press. See also E. H. Lieb and B. Simon, 1973, ā€œThomas-Fermi theory revisited,ā€ Phys. Rev. Lett. 33, 681ā€“683.

    Google ScholarĀ 

  • Lieb, E. H., and W. E. Thirring, 1975, ā€œA bound for the kinetic energy of fermions which proves the stability of matter,ā€ Phys. Rev. Lett. 35, 687ā€“689; Errata: Phys. Rev. Lett. 35, 1116. For more details on kinetic energy inequalities and their application, see also E. H. Lieb and W. E. Thirring, 1976, ā€œInequalities for the moments of the Eigenvalues of the Schrƶdinger Hamiltonian and their relation to Sobolev in-equalities,ā€ in Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, edited by E. H. Lieb, E. Simon, and A. S. Wightman (Princeton University, Princeton).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Rosen, G., 1971, ā€œMinimum value for c in the Sobolev in-equality āˆ„ Ļ† āˆ„ 3 ā‰¤ āˆ„ āˆ‡Ļ† āˆ„ 3,ā€ SIAM J. Appl. Math. 21, 30ā€“32.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  • Schwinger, J., 1961, ā€œOn the bound states of a given potential,ā€ Proc. Nat. Acad. Sci. (U.S.) 47, 122ā€“129.

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  • Scott, J. M. C, 1952, ā€œThe binding energy of the Thomas Fermi atom,ā€ Phil. Mag. 43, 859ā€“867.

    Google ScholarĀ 

  • Sheldon, J. W., 1955, ā€œUse of the statistical field approximation in molecular physics,ā€ Phys. Rev. 99, 1291ā€“1301.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Slater, J. C, 1930, ā€œThe theory of complex spectra,ā€ Phys. Rev. 34, 1293ā€“1322.

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Sobolev, S. L., 1938, Mat. Sb. 46, 471. See also S. L. Sobolev, 1950, ā€œApplications of functional analysis in mathematical physics,ā€ Leningrad; Am. Math. Soc. Transl. Monographs 7 (1963).

    Google ScholarĀ 

  • Sommerfeld, A., 1932, ā€œAsymptotische Integration der Differential-gleichung des Thomas-Fermischen Atoms,ā€ Z. Phys. 78, 283ā€“308.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Teller, E., 1962, ā€œOn the stability of molecules in the Thomas-Fermi theory,ā€ Rev. Mod. Phys. 34, 627ā€“631.

    ArticleĀ  ADSĀ  MATHĀ  Google ScholarĀ 

  • Thomas, L. H., 1927, ā€œThe calculation of atomic fields,ā€ Proc. Camb. Phil. Soc. 23, 542ā€“548.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Von WeizsƤcker, C. F., 1935, ā€œZur Theorie der Kernmassen,ā€ Z. Phys. 96, 431ā€“458.

    ArticleĀ  MATHĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Springer-Verlag Berlin Heidelberg New York

About this chapter

Cite this chapter

Lieb, E.H. (2005). The stability of matter. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27056-6_37

Download citation

Publish with us

Policies and ethics