Skip to main content

Mechanical Design of Step-Climbing Vehicle with Passive Linkages

  • Conference paper

Abstract

In our current research, we are developing a holonomic mobile vehicle which is capable of running over irregular terrain. Our developed vehicle realizes omni-directional motion on flat floors using special wheels and passes over non-flat ground using the passive suspension mechanism. This paper proposes a mechanical design of passive linkages for increasing the vehicle’s mobile performance on rough terrain. The developed vehicle has plural actuated wheels and all wheels are grounded for enough traction force using the passive linkage mechanism. However, according to the mechanical design of the passive linkages, the body configuration cannot fit the terrain surface and wheels cannot transmit its traction force. Therefore, in this paper, we discuss the mechanical design of the passive linkages which enable the body configuration to fit the ground shape and we propose new passive linkage mechanisms for increasing the mobile performance on rough terrain. The performance of our proposed method is verified by the experiments using our prototype vehicle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guy C., Georges B. and Brigitte D. A. (1996) Structual Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots. IEEE Transaction on Robotics and Automation, Vol.12, No.1, pp. 47–62.

    Article  Google Scholar 

  2. Daisuke C., Kuniaki K., Hayato K., Hajime A. and Taketoshi M. (2005) Development of a Control System for an Omni directional Vehicle with Step-Climbing Ability. Advanced Robotics, Vol.19, No.1, pp. 55–71.

    Article  Google Scholar 

  3. Hajime A., Masatoshi S., Luca B., Hayato K., Akihiro M. and Isao E. (1995) Development of an Omni-Directional Mobile Robot with 3 DOF Decoupling Drive Mechanism. Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 1925–1930.

    Google Scholar 

  4. Henry W. S. (1996) Mars Pathfinder Microrover: A Low-Cost, Low-Power Spacecraft. Proceedings of the 1996 AIAA Forum on Advanced Developments in Space Robotics, Madison, WI, August.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chugo, D., Kawabata, K., Kaetsu, H., Asama, H., Mishima, T. (2006). Mechanical Design of Step-Climbing Vehicle with Passive Linkages. In: Tokhi, M.O., Virk, G.S., Hossain, M.A. (eds) Climbing and Walking Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26415-9_34

Download citation

  • DOI: https://doi.org/10.1007/3-540-26415-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26413-2

  • Online ISBN: 978-3-540-26415-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics