Skip to main content

A novel neuroprotective compound FR901459 with dual inhibition of calcineurin and cyclophilins

  • Conference paper
Brain Edema XIII

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 96))

Summary

Brain ischemia leads to severe damage in the form of delayed neuronal cell death. In our study, we show that the marked neuroprotection of the new immunosuppressant FR901495 in forebrain ischemia is due not only to inhibition of calcineurin, but also to protection against mitochondrial damage caused by mitochondrial permeability transition pore formation through cyclophilin D, one of the prolyl cis/trans isomerase family members. These findings shed light on the clinical application and development of new drugs for the treatment of ischemic damage in the brain as well as in the heart and liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asai A, Qiu J, Narita Y, Chi S, Saito N, Shinoura N, Hamada H, Kuchino Y, Kirino T (1999) High level calcineurin activity predisposes neuronal cells to apoptosis. J Biol Chem 274: 34450–34458

    Article  PubMed  CAS  Google Scholar 

  2. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434: 658–662

    Article  PubMed  CAS  Google Scholar 

  3. Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999) Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 264: 687–701

    Article  PubMed  CAS  Google Scholar 

  4. Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 18: 4914–4928

    PubMed  CAS  Google Scholar 

  5. Coghlan VM, Perrino BA, Howard M, Langeberg LK, Hicks JB, Gallatin WM, Scott JD (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267: 108–111

    PubMed  CAS  Google Scholar 

  6. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341: 233–249

    Article  PubMed  CAS  Google Scholar 

  7. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241

    Article  PubMed  CAS  Google Scholar 

  8. Drake M, Friberg H, Boris-Moller F, Sakata K, Wieloch T (1996) The immunosuppressant FK506 ameliorates ischaemic damage in the rat brain. Acta Physiol Scand 158: 155–159

    Article  PubMed  CAS  Google Scholar 

  9. Ferrer I, Lopez E, Blanco R, Rivera R, Ballabriga J, Pozas E, Marti E (1998) Bcl-2, Bax, and Bcl-x expression in the CA1 area of the hippocampus following transient forebrain ischemia in the adult gerbil. Exp Brain Res 121: 167–173

    Article  PubMed  CAS  Google Scholar 

  10. Friberg H, Connern C, Halestrap AP, Wieloch T (1999) Differences in the activation of the mitochondrial permeability transition among brain regions in the rat correlate with selective vulnerability. J Neurochem 72: 2488–2497

    Article  PubMed  CAS  Google Scholar 

  11. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312

    Article  PubMed  CAS  Google Scholar 

  12. Griffiths EJ, Halestrap AP (1993) Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25: 1461–1469

    Article  PubMed  CAS  Google Scholar 

  13. Hayashi T, Nagasue N, Kohno H, Chang YC, Nakamura T (1991) Beneficial effect of cyclosporine pretreatment in canine liver ischemia. Enzymatic and electronmicroscopic studies. Transplantation 52: 116–121

    PubMed  CAS  Google Scholar 

  14. Khaspekov L, Friberg H, Halestrap A, Viktorov I, Wieloch T (1999) Cyclosporin A and its nonimmunosuppressive analogue N-Me-Val-4-cyclosporin A mitigate glucose/oxygen deprivation-induced damage to rat cultured hippocampal neurons. Eur J Neurosci 11: 3194–3198

    Article  PubMed  CAS  Google Scholar 

  15. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 57–69

    Article  PubMed  CAS  Google Scholar 

  16. Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66: 807–815

    Article  PubMed  CAS  Google Scholar 

  17. Martins E, Inamura K, Themner K, Malmqvist KG, Siesjö BK (1988) Accumulation of calcium and loss of potassium in the hippocampus following transient cerebral ischemia: a proton microprobe study. J Cereb Blood Flow Metab 8: 531–538

    PubMed  CAS  Google Scholar 

  18. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434: 652–658

    Article  PubMed  CAS  Google Scholar 

  19. Sakamoto K, Tsujii E, Miyauchi M, Nakanishi T, Yamashita M, Shigematsu N, Tada T, Izumi S, Okuhara M (1993) FR901459, a novel immunosuppressant isolated from Stachybotrys chartarum No. 19392. Taxonomy of the producing organism, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 46: 1788–1798

    PubMed  CAS  Google Scholar 

  20. Sharkey J, Butcher SP (1994) Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischemia. Nature 371: 336–339

    Article  PubMed  CAS  Google Scholar 

  21. Shibasaki F, McKeon F (1995) Calcineurin functions in Ca(2+)-activated cell death in mammalian cells. J Cell Biol 131: 735–743

    Article  PubMed  CAS  Google Scholar 

  22. Sugano N, Ito K, Murai S (1999) Cyclosporin A inhibits H2O2-induced apoptosis of human fibroblasts. FEBS Lett 447: 274–276

    Article  PubMed  CAS  Google Scholar 

  23. Uchino H, Elmer E, Uchino K, Lindvall O, Siesjö BK (1995) Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischemia in the rat. Acta Physiol Scand 155: 469–471

    Article  PubMed  CAS  Google Scholar 

  24. Uchino H, Elmer E, Uchino K, Li PA, He QP, Smith ML, Siesjö BK (1998) Amelioration by cyclosporin A of brain damage in transient forebrain ischemia in the rat. Brain Res 812: 216–226

    Article  PubMed  CAS  Google Scholar 

  25. Uchino H, Minamikawa-Tachino R, Kristian T, Perkins G, Narazaki M, Siesjo BK, Shibasaki F (2002) Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition. Neurobiol Dis 10: 219–233

    Article  PubMed  CAS  Google Scholar 

  26. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284: 339–343

    Article  PubMed  CAS  Google Scholar 

  27. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80: 285–291

    Article  PubMed  CAS  Google Scholar 

  28. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X (L). Cell 87: 619–628

    Article  PubMed  CAS  Google Scholar 

  29. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this paper

Cite this paper

Uchino, H. et al. (2006). A novel neuroprotective compound FR901459 with dual inhibition of calcineurin and cyclophilins. In: Hoff, J.T., Keep, R.F., Xi, G., Hua, Y. (eds) Brain Edema XIII. Acta Neurochirurgica Supplementum, vol 96. Springer, Vienna. https://doi.org/10.1007/3-211-30714-1_35

Download citation

  • DOI: https://doi.org/10.1007/3-211-30714-1_35

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-30712-0

  • Online ISBN: 978-3-211-30714-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics