Skip to main content

Role of Phospholipase D-Derived Phosphatidic Acid in Regulated Exocytosis and Neurological Disease

  • Chapter
  • First Online:
Book cover Lipid Signaling in Human Diseases

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 259))

Abstract

Lipids play a vital role in numerous cellular functions starting from a structural role as major constituents of membranes to acting as signaling intracellular or extracellular entities. Accordingly, it has been known for decades that lipids, especially those coming from diet, are important to maintain normal physiological functions and good health. On the other side, the exact molecular nature of these beneficial or deleterious lipids, as well as their precise mode of action, is only starting to be unraveled. This recent improvement in our knowledge is largely resulting from novel pharmacological, molecular, cellular, and genetic tools to study lipids in vitro and in vivo. Among these important lipids, phosphatidic acid plays a unique and central role in a great variety of cellular functions. This review will focus on the proposed functions of phosphatidic acid generated by phospholipase D in the last steps of regulated exocytosis with a specific emphasis on hormonal and neurotransmitter release and its potential impact on different neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn BH, Rhim H, Kim SY, Sung YM, Lee MY, Choi JY, Wolozin B, Chang JS, Lee YH, Kwon TK, Chung KC, Yoon SH, Hahn SJ, Kim MS, Jo YH, Min DS (2002) alpha-Synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells. J Biol Chem 277(14):12334–12342

    CAS  PubMed  Google Scholar 

  • Ammar MR, Humeau Y, Hanauer A, Nieswandt B, Bader MF, Vitale N (2013) The Coffin-Lowry syndrome-associated protein RSK2 regulates neurite outgrowth through phosphorylation of phospholipase D1 (PLD1) and synthesis of phosphatidic acid. J Neurosci 33(50):19470–19479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ammar MR, Thahouly T, Hanauer A, Stegner D, Nieswandt B, Vitale N (2015) PLD1 participates in BDNF-induced signalling in cortical neurons. Sci Rep 5:14778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andreyev AY, Fahy E, Guan Z, Kelly S, Li X, McDonald JG, Milne S, Myers D, Park H, Ryan A, Thompson BM, Wang E, Zhao Y, Brown HA, Merrill AH, Raetz CR, Russell DW, Subramaniam S, Dennis EA (2010) Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res 51(9):2785–2797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Audebert S, Navarro C, Nourry C, Chasserot-Golaz S, Lécine P, Bellaiche Y, Dupont JL, Premont RT, Sempéré C, Strub JM, Van Dorsselaer A, Vitale N, Borg JP (2004) Mammalian Scribble forms a tight complex with the betaPIX exchange factor. Curr Biol 14(11):987–995

    CAS  PubMed  Google Scholar 

  • Bader MF, Holz RW, Kumakura K, Vitale N (2002) Exocytosis: the chromaffin cell as a model system. Ann N Y Acad Sci 971:178–183

    CAS  PubMed  Google Scholar 

  • Béglé A, Tryoen-Tóth P, de Barry J, Bader MF, Vitale N (2009) ARF6 regulates the synthesis of fusogenic lipids for calcium-regulated exocytosis in neuroendocrine cells. J Biol Chem 284(8):4836–4845

    PubMed  Google Scholar 

  • Bhattacharya M, Babwah AV, Godin C, Anborgh PH, Dale LB, Poulter MO, Ferguson SS (2004) Ral and phospholipase D2-dependent pathway for constitutive metabotropic glutamate receptor endocytosis. J Neurosci 24(40):8752–8761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boggs JM (1987) Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta 906(3):353–404

    CAS  PubMed  Google Scholar 

  • Bullen HE, Jia Y, Yamaryo-Botté Y, Bisio H, Zhang O, Jemelin NK, Marq JB, Carruthers V, Botté CY, Soldati-Favre D (2016) Phosphatidic acid-mediated signaling regulates microneme secretion in toxoplasma. Cell Host Microbe 19(3):349–360

    CAS  PubMed  Google Scholar 

  • Burgess TL, Kelly RB (1987) Constitutive and regulated secretion of proteins. Annu Rev Cell Biol 3:243–293

    CAS  PubMed  Google Scholar 

  • Caumont AS, Galas MC, Vitale N, Aunis D, Bader MF (1998) Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D. J Biol Chem 273(3):1373–1379

    CAS  PubMed  Google Scholar 

  • Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15(7):675–683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi WS, Kim YM, Combs C, Frohman MA, Beaven MA (2002) Phospholipases D1and D2 regulate different phases of exocytosis in mast cells. J Immunol 168(11):5682–5689

    CAS  PubMed  Google Scholar 

  • Corrotte M, Chasserot-Golaz S, Huang P, Du G, Ktistakis NT, Frohman MA, Vitale N, Bader MF, Grant NJ (2006) Dynamics and function of phospholipase D and phosphatidic acid during phagocytosis. Traffic 7(3):365–377

    CAS  PubMed  Google Scholar 

  • Demel RA, Yin CC, Lin BZ, Hauser H (1992) Monolayer characteristics and thermal behaviour of phosphatidic acids. Chem Phys Lipids 60:209–223

    CAS  PubMed  Google Scholar 

  • Disse J, Vitale N, Bader MF, Gerke V (2009) Phospholipase D1 is specifically required for regulated secretion of von Willebrand factor from endothelial cells. Blood 113:973–980

    CAS  PubMed  Google Scholar 

  • Du G, Altshuller YM, Vitale N, Huang P, Chasserot-Golaz S, Morris AJ, Bader MF, Frohman MA (2003) Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J Cell Biol 162(2):305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Escribá PV (2017) Membrane-lipid therapy: a historical perspective of membrane-targeted therapies – from lipid bilayer structure to the pathophysiological regulation of cells. Biochim Biophys Acta 1859(9 PtB):1493–1506

    Google Scholar 

  • Frohman MA (2015) The phospholipase D superfamily as therapeutic targets. Trends Pharmacol Sci 36(3):137–144

    Google Scholar 

  • Fulop T, Smith C (2006) Physiological stimulation regulates the exocytic mode through calcium activation of protein kinase C in mouse chromaffin cells. Biochem J 399(1):111–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garidel P, Johann C, Blume A (1997) Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH. Biophys J 72(5):2196–2210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasman S, Vitale N (2017) Lipid remodelling in neuroendocrine secretion. Biol Cell 109(11):381–390

    CAS  PubMed  Google Scholar 

  • Grodnitzky JA, Syed N, Kimber MJ, Day TA, Donaldson JG, Hsu WH (2007) Somatostatin receptors signal through EFA6A-ARF6 to activate phospholipase D in clonal beta-cells. J Biol Chem 282(18):13410–13418

    CAS  PubMed  Google Scholar 

  • Guerri C, Renau-Piqueras J (1997) Alcohol, astroglia, and brain development. Mol Neurobiol 15(1):65–81

    CAS  PubMed  Google Scholar 

  • Guizzetti M, Catlin M, Costa LG (1997) The effects of ethanol on glial cell proliferation: relevanceto the fetal alcohol syndrome. Front Biosci 2:e93–e98

    CAS  PubMed  Google Scholar 

  • Huang P, Altshuller YM, Hou JC, Pessin JE, Frohman MA (2005) Insulin-stimulated plasma membrane fusion of Glut4 glucose transporter-containing vesicles is regulated by phospholipase D1. Mol Biol Cell 16(6):2614–2623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes WE, Elgundi Z, Huang P, Frohman MA, Biden TJ (2004) Phospholipase D1 regulates secretagogue-stimulated insulin release in pancreatic p-cells. J Biol Chem 279:27534–27541

    CAS  PubMed  Google Scholar 

  • Humeau Y, Vitale N, Chasserot-Golaz S, Dupont JL, Du G, Frohman MA, Bader MF, Poulain B (2001) A role for phospholipase D1 in neurotransmitter release. Proc Natl Acad Sci U S A 98(26):15300–15305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humeau Y, Gambino F, Chelly J, Vitale N (2009) X-linked mental retardation: focus on synaptic function and plasticity. J Neurochem 109(1):1–14

    CAS  PubMed  Google Scholar 

  • Iversen L, Mathiasen S, Larsen JB, Stamou D (2015) Membrane curvature bends the laws of physicsand chemistry. Nat Chem Biol 11(11):822–825

    CAS  PubMed  Google Scholar 

  • Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang HJ, Yang YR, Kim JK, Choi JH, Seo YK, Lee YH, Lee JE, Ryu SH, Suh PG (2013) Phospholipase C-γ1 involved in brain disorders. Adv Biol Regul 53(1):51–62

    CAS  PubMed  Google Scholar 

  • Jenco JM, Rawlingson A, Daniels B, Morris AJ (1998) Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37(14):4901–4909

    CAS  PubMed  Google Scholar 

  • Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62(19–20):2305–2316

    CAS  PubMed  Google Scholar 

  • Jin JK, Kim NH, Min DS, Kim JI, Choi JK, Jeong BH, Choi SI, Choi EK, Carp RI, Kim YS (2005) Increased expression of phospholipase D1 in the brains of scrapie-infected mice. J Neurochem 92(3):452–461

    CAS  PubMed  Google Scholar 

  • Jones DH, Morris JB, Morgan CP, Kondo H, Irvine RF, Cockcroft S (2000) Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the golgi compartment. J Biol Chem 275(18):13962–13966

    CAS  PubMed  Google Scholar 

  • Jouhet J (2013) Importance of the hexagonal lipid phase in biological membrane organization. Front Plant Sci 4:494

    PubMed  PubMed Central  Google Scholar 

  • Jung AG, Labarrera C, Jansen AM, Qvortrup K, Wild K, Kjaerulff O (2010) A mutational analysis of the endophilin-A N-BAR domain performed in living flies. PLoS One 5:e9492

    PubMed  PubMed Central  Google Scholar 

  • Kanfer JN, Singh IN, Pettegrew JW, McCartney DG, Sorrentino G (1996) Phospholipid metabolism in Alzheimer’s disease and in a human cholinergic cell. J Lipid Mediat Cell Signal 14(1–3):361–363

    CAS  PubMed  Google Scholar 

  • Kassas N, Tanguy E, Thahouly T, Fouillen L, Heintz D, Chasserot-Golaz S, Bader MF, Grant NJ, Vitale N (2017) Comparative characterization of phosphatidic acid sensors and their localization during frustrated phagocytosis. J Biol Chem 292(10):4266–4279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Min G, Bae YS, Min DS (2004a) Phospholipase D is involved in oxidative stress-induced migration of vascular smooth muscle cells via tyrosine phosphorylation and protein kinase C. Exp Mol Med 36(2):103–109

    CAS  PubMed  Google Scholar 

  • Kim SY, Ahn BH, Min KJ, Lee YH, Joe EH, Min DS (2004b) Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells. J Biol Chem 279(37):38125–38133

    CAS  PubMed  Google Scholar 

  • Kim SY, Min DS, Choi JS, Choi YS, Park HJ, Sung KW, Kim J, Lee MY (2004c) Differential expression of phospholipase D isozymes in the hippocampus following kainic acid-induced seizures. J Neuropathol Exp Neurol 63:812–820

    CAS  PubMed  Google Scholar 

  • Kim M, Moon C, Kim H, Shin MK, Min do S, Shin T (2010) Developmental levels of phospholipase D isozymes in the brain of developing rats. Acta Histochem 112(1):81–91

    CAS  PubMed  Google Scholar 

  • Klein J (2005) Functions and pathophysiological roles of phospholipase D in the brain. J Neurochem 94(6):1473–1487

    CAS  PubMed  Google Scholar 

  • Klein J, Holler T, Cappel E, Köppen A, Löffelholz K (1993) Release of choline from rat brain under hypoxia: contribution from phospholipase A2 but not from phospholipase D. Brain Res 630(1–2):337–340

    CAS  PubMed  Google Scholar 

  • Kooijman EE, Chupin V, Fuller NL, Kozlov MM, de Kruijff B, Burger KN, Rand PR (2005) Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44(6):2097–2102

    CAS  PubMed  Google Scholar 

  • Kozlovsky Y, Chernomordik LV, Kozlov MM (2002) Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Biophys J 83(5):2634–2651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lalli G, Hall A (2005) Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex. J Cell Biol 171(5):857–869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam IP, Siu FK, Chu JY, Chow BK (2008) Multiple actions of secretin in the human body. Int Rev Cytol 265:159–190

    CAS  PubMed  Google Scholar 

  • Lauwers E, Goodchild R, Verstreken P (2016) Membrane lipids in presynaptic function and disease. Neuron 90(1):11–25

    CAS  PubMed  Google Scholar 

  • Lee MY, Kim SY, Min DS, Choi YS, Shin SL, Chun MH, Lee SB, Kim MS, Jo YH (2000) Upregulation of phospholipase D in astrocytes in response to transient forebrain ischemia. Glia 30(3):311–317

    CAS  PubMed  Google Scholar 

  • Leung DW (2001) The structure and functions of human lysophosphatidic acid acyltransferases. Front Biosci 6(1):D944–D953

    CAS  PubMed  Google Scholar 

  • Lewis KT, Maddipati KR, Taatjes DJ, Jena BP (2014) Neuronal porosome lipidome. J Cell MolMed 18(10):1927–1937

    CAS  Google Scholar 

  • Liu Y, Zhang YW, Wang X, Zhang H, You X, Liao FF, Xu H (2009) Intracellular trafficking of presenilin 1 is regulated by beta-amyloid precursor protein and phospholipase D1. J Biol Chem 284(18):12145–12152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ljubicic S, Bezzi P, Vitale N, Regazzi R (2009) The GTPase RalA regulates different steps of the secretory process in pancreatic beta-cells. PLoS One 4(11):e7770

    PubMed  PubMed Central  Google Scholar 

  • Lopez JA, Brennan AJ, Whisstock JC, Voskoboinik I, Trapani JA (2012) Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends Immunol 33(8):406–412

    CAS  PubMed  Google Scholar 

  • Lou X, Kim J, Hawk BJ, Shin YK (2017) α-Synuclein may cross-bridge v-SNARE and acidic phospholipids to facilitate SNARE-dependent vesicle docking. Biochem J 474(12):2039–2049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martens S (2010) Role of C2 domain proteins during synaptic vesicle exocytosis. Biochem Soc Trans 38:213–216

    CAS  PubMed  Google Scholar 

  • Mateos MV, Giusto NM, Salvador GA (2012) Distinctive roles of PLD signaling elicited by oxidative stress in synaptic endings from adult and aged rats. Biochim Biophys Acta 1823(12):2136–2148

    CAS  PubMed  Google Scholar 

  • Meyer MZ, Déliot N, Chasserot-Golaz S, Premont RT, Bader MF, Vitale N (2006) Regulation of neuroendocrine exocytosis by the ARF6 GTPase-activating protein GIT1. J Biol Chem 281(12):7919–7926

    CAS  PubMed  Google Scholar 

  • Mima J, Wickner W (2009) Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion. Proc Natl Acad Sci U S A 106(38):16191–16196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Momboisse F, Lonchamp E, Calco V, Ceridono M, Vitale N, Bader MF, Gasman S (2009) betaPIX-activated Rac1 stimulates the activation of phospholipase D, which is associated with exocytosis in neuroendocrine cells. J Cell Sci 122(Pt 6):798–806

    CAS  PubMed  Google Scholar 

  • Nelson RK, Frohman MA (2015) Physiological and pathophysiological roles for phospholipase D. J Lipid Res 56(12):2229–2237

    Google Scholar 

  • Nishida A, Emoto K, Shimizu M, Uozumi T, Yamawaki S (1994) Brain ischemia decreases phosphatidylcholine-phospholipase D but not phosphatidylinositol-phospholipase C in rats. Stroke 25(6):1247–1251

    CAS  PubMed  Google Scholar 

  • Oh SO, Hong JH, Kim YR, Yoo HS, Lee SH, Lim K, Hwang BD, Exton JH, Park SK (2000) Regulation of phospholipase D2 by H(2)O(2) in PC12 cells. J Neurochem 75(6):2445–2454

    CAS  PubMed  Google Scholar 

  • Oliveira TG, Chan RB, Tian H, Laredo M, Shui G, Staniszewski A, Zhang H, Wang L, Kim TW, Duff KE, Wenk MR, Arancio O, Di Paolo G (2010) Phospholipase d2 ablation ameliorates Alzheimer’s disease-linked synaptic dysfunction and cognitive deficits. J Neurosci 30(49):16419–16428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payton JE, Perrin RJ, Woods WS, George JM (2004) Structural determinants of PLD2 inhibition by alpha-synuclein. J Mol Biol 337(4):1001–1009

    CAS  PubMed  Google Scholar 

  • Rogasevskaia TP, Coorssen JR (2015) The role of phospholipase D in regulated exocytosis. J Biol Chem 290(48):28683–28696

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrbough J, Broadie K (2005) Lipid regulation of the synaptic vesicle cycle. Nat Rev Neurosci 6(2):139–150

    CAS  PubMed  Google Scholar 

  • Schwarz K, Natarajan S, Kassas N, Vitale N, Schmitz F (2011) The synaptic ribbon is a site of phosphatidic acid generation in ribbon synapses. J Neurosci 31(44):15996–16011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Servitja JM, Masgrau R, Pardo R, Sarri E, Picatoste F (2000) Effects of oxidative stress on phospholipid signaling in rat cultured astrocytes and brain slices. J Neurochem 75(2):788–794

    CAS  PubMed  Google Scholar 

  • Shin EY, Ma EK, Kim CK, Kwak SJ, Kim EG (2002) Src/ERK but not phospholipase D is involved in keratinocyte growth factor-stimulated secretion of matrix metalloprotease-9 and urokinase-type plasminogen activator in SNU-16 human stomach cancer cell. J Cancer Res Clin Oncol 128(11):596–602

    CAS  PubMed  Google Scholar 

  • Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stutchfield J, Cockcroft S (1993) Correlation between secretion and phospholipase D activation in differentiated HL60 cells. Biochem J 293(Pt3):649–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Xia M, Shahane SA, Jadhav A, Austin CP, Huang R (2013) Are hERG channel blockers also phospholipidosis inducers? Bioorg Med Chem Lett 23(16):4587–4590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabet R, Moutin E, Becker JA, Heintz D, Fouillen L, Flatter E, Krężel W, Alunni V, Koebel P, Dembélé D, Tassone F, Bardoni B, Mandel JL, Vitale N, Muller D, Le Merrer J, Moine H (2016a) Fragile X Mental Retardation Protein (FMRP) controls diacylglycerol kinase activity in neurons. Proc Natl Acad Sci U S A 113:E3619–E3628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabet R, Vitale N, Moine H (2016b) Fragile X syndrome: are signaling lipids the missing culprits? Biochimie 130:188–194

    CAS  PubMed  Google Scholar 

  • Tanguy E, Carmon O, Wang Q, Jeandel L, Chasserot-Golaz S, Montero-Hadjadje M, Vitale N (2016) Lipids implicated in the journey of a secretory granule: from biogenesis to fusion. J Neurochem 137(6):904–912

    CAS  PubMed  Google Scholar 

  • Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A 100(4):2070–2075. Epub 21 Jan 2003

    Google Scholar 

  • Topham MK (2006) Signaling roles of diacylglycerol kinases. J Cell Biochem 97(3):474–484 Review

    CAS  PubMed  Google Scholar 

  • van Kempen GT, vanderLeest HT, van den Berg RJ, Eilers P, Westerink RH (2011) Three distinct modes of exocytosis revealed by amperometry in neuroendocrine cells. Biophys J 100(4):968–977

    PubMed  PubMed Central  Google Scholar 

  • Vance DE, Goldfine H (2002) Konrad Bloch – a pioneer in cholesterol and fatty acid biosynthesis. Biochem Biophys Res Commun 292(5):1117–1127

    CAS  PubMed  Google Scholar 

  • Vance JE, Vance DE (2004) Phospholipid biosynthesis in mammalian cells. Biochem Cell Biol 82(1):113–128

    CAS  PubMed  Google Scholar 

  • Vicogne J, VollenweiderD SJR, Huang P, Frohman MA, Pessin JE (2006) Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc Natl Acad Sci U S A 103:14761–14766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale N (2010) Synthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated exocytosis in neuroendocrine cells. Biochem Soc Trans 38(Pt 1):167–171

    CAS  PubMed  Google Scholar 

  • Vitale N, Caumont AS, Chasserot-Golaz S, Du G, Wu S, Sciorra VA, Morris AJ, Frohman MA, Bader MF (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20(10):2424–2434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale N, Chasserot-Golaz S, Bader MF (2002) Regulated secretion in chromaffin cells: an essential role for ARF6-regulated phospholipase D in the late stages of exocytosis. Ann N Y Acad Sci 971:193–200

    CAS  PubMed  Google Scholar 

  • Vitale N, Mawet J, Camonis J, Regazzi R, Bader MF, Chasserot-Golaz S (2005) The small GTPase RalA controls exocytosis of large dense core secretory granules by interacting with ARF6-dependent phospholipase D1. J Biol Chem 280(33):29921–29928

    CAS  PubMed  Google Scholar 

  • Vodicka P, Mo S, Tousley A, Green KM, Sapp E, Iuliano M, Sadri-Vakili G, Shaffer SA, Aronin N, DiFiglia M, Kegel-Gleason KB (2015) Mass spectrometry analysis of wild-type and knock-in Q140/Q140 Huntington’s disease mouse brains reveals changes in glycerophospholipids including alterations in phosphatidic acid and lyso-phosphatidic acid. J Huntingtons Dis 4(2):187–201

    CAS  PubMed  Google Scholar 

  • Waselle L, Gerona RR, Vitale N, Martin TF, Bader MF, Regazzi R (2005) Role of phosphoinositide signaling in the control of insulin exocytosis. Mol Endocrinol 19(12):3097–3106. Epub 4 Aug 2005

    Google Scholar 

  • Williams JM, Pettitt TR, Powell W, Grove J, Savage CO, Wakelam MJ et al (2007) Antineutrophil cytoplasm antibody-stimulated neutrophil adhesion depends on diacylglycerol kinase-catalyzed phosphatidic acid formation. J Am Soc Nephrol 18(4):1112–1120

    CAS  PubMed  Google Scholar 

  • Xie MS, Jacobs LS, Dubyak GR (1991) Activation of phospholipase D and primary granule secretion by P2-purinergic- and chemotactic peptide-receptor agaonists is induced during granulocyte differenciation of HL-60 cells. J Clin Invest 88:45–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeniou-Meyer M, Zabari N, Ashery U, Chasserot-Golaz S, Haeberlé AM, Demais V, Bailly Y, Gottfried I, Nakanishi H, Neiman AM, Du G, Frohman MA, Bader MF, Vitale N (2007) Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage. J Biol Chem 282(30):21746–21757

    CAS  PubMed  Google Scholar 

  • Zeniou-Meyer M, Liu Y, Béglé A, Olanich ME, Hanauer A, Becherer U, Rettig J, Bader MF, Vitale N (2008) The Coffin-Lowry syndrome-associated protein RSK2 is implicated in calcium-regulated exocytosis through the regulation of PLD1. Proc Natl Acad Sci U S A 105(24):8434–8439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeniou-Meyer M, Gambino F, Ammar MR, Humeau Y, Vitale N (2010) The Coffin-Lowry syndrome-associated protein RSK2 and neurosecretion. Cell Mol Neurobiol 30(8):1401–1406

    CAS  PubMed  Google Scholar 

  • Zhang Y, Huang P, Du G, Kanaho Y, Frohman MA, Tsirka SE (2004) Increased expression of two phospholipase D isoforms during experimentally induced hippocampal mossy fiber outgrowth. Glia 46(1):74–83

    PubMed  Google Scholar 

  • Zhu YB, Kang K, Zhang Y, Qi C, Li G, Yin DM, Wang Y (2012) PLD1 negatively regulates dendritic branching. J Neurosci 32(23):7960–7969

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Vitale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanguy, E., Wang, Q., Vitale, N. (2018). Role of Phospholipase D-Derived Phosphatidic Acid in Regulated Exocytosis and Neurological Disease. In: Gomez-Cambronero, J., Frohman, M. (eds) Lipid Signaling in Human Diseases. Handbook of Experimental Pharmacology, vol 259. Springer, Cham. https://doi.org/10.1007/164_2018_180

Download citation

Publish with us

Policies and ethics