Skip to main content

Mammalian Cell-Based Sensor System

  • Chapter
  • First Online:
Whole Cell Sensing Systems I

Abstract

Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term “mammalian cell-based biosensor” is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the “normal” physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell–cell and cell–substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA (1999) Development and application of cell-based biosensors. Ann Biomed Eng 27:697–711

    CAS  Google Scholar 

  2. Banerjee P, Bhunia AK (2009) Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol 27(3):179–188

    CAS  Google Scholar 

  3. Banerjee P, Lenz D, Robinson JP, Rickus JL, Bhunia AK (2008) A novel and simple cell-based detection system with a collagen-encapsulated B-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Lab Invest 88:196–206

    CAS  Google Scholar 

  4. Bhunia AK, Banada PP, Banerjee P, Valadez A, Hirleman ED (2007) Light scattering, fiber optic-and cell-based sensors for sensitive detection of foodborne pathogens. J Rapid Methods Autom Microbiol 15:121–145

    Google Scholar 

  5. Stenger DA, Gross GW, Keefer EW, Shaffer KM, Andreadis JD, Ma W, Pancrazio JJ (2001) Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol 19:304–309

    CAS  Google Scholar 

  6. Ziegler C (2000) Cell-based biosensors. Fresenius' J Anal Chem 366:552–559

    CAS  Google Scholar 

  7. Rawson DM, Willmer AJ, Turner AP (1989) Whole-cell biosensors for environmental monitoring. Biosensors 4:299–311

    CAS  Google Scholar 

  8. Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84:2709–2714

    CAS  Google Scholar 

  9. Giaever I, Keese CR (1993) A morphological biosensor for mammalian cells. Nature 366:591–592

    CAS  Google Scholar 

  10. Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, Kehoe M, Palmer M (1996) Staphylococcal alpha-toxin, streptolysin-O, and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol 165:73–79

    CAS  Google Scholar 

  11. Gilbert RJ (2002) Pore-forming toxins. Cell Mol Life Sci 59:832–844

    CAS  Google Scholar 

  12. Bhunia AK, Westbrook DG (1998) Alkaline phosphatase release assay to determine cytotoxicity for Listeria species. Lett Appl Microbiol 26:305–310

    CAS  Google Scholar 

  13. Low MG, Finean JB (1978) Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C. Biochim Biophys Acta 508:565–570

    CAS  Google Scholar 

  14. Moss DW (1994) Release of membrane-bound enzymes from cells and the generation of isoforms. Clin Chim Acta 226:131–142

    CAS  Google Scholar 

  15. Hardy SP, Lund T, Granum PE (2001) CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol Lett 197:47–51

    CAS  Google Scholar 

  16. Sekiya K, Futaesaku Y (1998) Characterization of the damage to membranes caused by bacterial cytolysins. J Electron Microsc (Tokyo) 47:543–552

    CAS  Google Scholar 

  17. Banerjee P, Morgan MT, Rickus JL, Ragheb K, Corvalan C, Robinson JP, Bhunia AK (2007) Hybridoma Ped-2E9 cells cultured under modified conditions can sensitively detect Listeria monocytogenes and Bacillus cereus. Appl Microbiol Biotechnol 73:1423–1434

    CAS  Google Scholar 

  18. Gray KM, Bhunia AK (2005) Specific detection of cytopathogenic Listeria monocytogenes using a two-step method of immunoseparation and cytotoxicity analysis. J Microbiol Methods 60:259–268

    CAS  Google Scholar 

  19. Gray KM, Banada PP, O'Neal E, Bhunia AK (2005) Rapid Ped-2E9 cell-based cytotoxicity analysis and genotyping of Bacillus species. J Clin Microbiol 43:5865–5872

    CAS  Google Scholar 

  20. Lee JH, Mitchell RJ, Kim BC, Cullen DC, Gu MB (2005) A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron 21:500–507

    CAS  Google Scholar 

  21. Hertzberg RP, Pope AJ (2000) High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol 4:445–451

    CAS  Google Scholar 

  22. Aravanis AM, DeBusschere BD, Chruscinski AJ, Gilchrist KH, Kobilka BK, Kovacs GT (2001) A genetically engineered cell-based biosensor for functional classification of agents. Biosens Bioelectron 16:571–577

    CAS  Google Scholar 

  23. Bousse L (1996) Whole cell biosensors. Sens Actuators B Chem 34:270–275

    Google Scholar 

  24. Rabinowitz P, Gordon Z, Chudnov D, Wilcox M, Odofin L, Liu A, Dein J (2006) Animals as sentinels of bioterrorism agents. Emerg Infect Dis 12:647–652

    Google Scholar 

  25. Gubernot DM, Boyer BL, Moses MS (2008) Animal as early detectors of bioevents: veterinary tools and a framework for animal-human integrated zoonotic disease surveillance. Public Health Rep 123:300–315

    Google Scholar 

  26. van der Schalie WH, Gardner HS, Bantle JA, De Rosa CT, Finch RA, Reif JS, Reuter RH, Backer LC, Burger J, Folmar LC, Stokes WS (1999) Animals as sentinels of human health hazards of environmental chemicals. Environ Health Perspect 107:309–315

    Google Scholar 

  27. Li N, Tourovskaia A, Folch A (2003) Biology on a chip: microfabrication for studying the behavior of cultured cells. Crit Rev Biomed Eng 31:423–488

    Google Scholar 

  28. O’Shaughnessy TJ, Pancrazio JJ (2007) Broadband detection of environmental neurotoxicants. Anal Chem 79:8838–8845

    Google Scholar 

  29. Slaughter GE, Hobson R (2009) An impedimetric biosensor based on PC 12 cells for the monitoring of exogenous agents. Biosens Bioelectron 24:1153–1158

    CAS  Google Scholar 

  30. Benderitter M, Vincent-Genod L, Pouget JP, Voisin P (2003) The cell membrane as a biosensor of oxidative stress induced by radiation exposure: a multiparameter investigation. Radiat Res 159:471–483

    CAS  Google Scholar 

  31. Kintzios S, Bem F, Mangana O, Nomikou K, Markoulatos P, Alexandropoulos N, Fasseas C, Arakelyan V, Petrou AL, Soukouli K, Moschopoulou G, Yialouris C, Simonian A (2004) Study on the mechanism of Bioelectric Recognition Assay: evidence for immobilized cell membrane interactions with viral fragments. Biosens Bioelectron 20:907–916

    CAS  Google Scholar 

  32. Kintzios S, Makri O, Pistola E, Matakiadis T, Shi HP, Economou A (2004) Scale-up production of puerarin from hairy roots of Pueraria phaseoloides in an airlift bioreactor. Biotechnol Lett 26:1057–1059

    CAS  Google Scholar 

  33. Yamazaki V, Sirenko O, Schafer RJ, Nguyen L, Gutsmann T, Brade L, Groves JT (2005) Cell membrane array fabrication and assay technology. BMC Biotechnol 5:18

    Google Scholar 

  34. Alves ID, Salgado GF, Salamon Z, Brown MF, Tollin G, Hruby VJ (2005) Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy. Biophys J 88:198–210

    CAS  Google Scholar 

  35. Minic J, Grosclaude J, Aioun J, Persuy MA, Gorojankina T, Salesse R, Pajot-Augy E, Hou Y, Helali S, Jaffrezic-Renault N, Bessueille F, Errachid A, Gomila G, Ruiz O, Samitier J (2005) Immobilization of native membrane-bound rhodopsin on biosensor surfaces. Biochim Biophys Acta 1724:324–332

    CAS  Google Scholar 

  36. Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius' J Anal Chem 366:540–551

    CAS  Google Scholar 

  37. Lehmann M, Riedel K, Adler K, Kunze G (2000) Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor. Biosens Bioelectron 15:211–219

    CAS  Google Scholar 

  38. Mattiasson B (1997) Cell-based biosensors for environmental monitoring with special reference to heavy metal analysis. Res Microbiol 148:533

    CAS  Google Scholar 

  39. Sanders CA, Rodriguez M Jr, Greenbaum E (2001) Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction. Biosens Bioelectron 16:439–446

    CAS  Google Scholar 

  40. Smutok O, Dmytruk K, Gonchar M, Sibirny A, Schuhmann W (2007) Permeabilized cells of flavocytochrome b(2) over-producing recombinant yeast Hansenula polymorpha as biological recognition element in amperometric lactate biosensors. Biosens Bioelectron 23:599–605

    CAS  Google Scholar 

  41. Immonen N, Karp M (2007) Bioluminescence-based bioassays for rapid detection of nisin in food. Biosens Bioelectron 22:1982–1987

    CAS  Google Scholar 

  42. Schmidt A, StandfussGabisch C, Bilitewski U (1996) Microbial biosensor for free fatty acids using an oxygen electrode based on thick film technology. Biosens Bioelectron 11:1139–1145

    CAS  Google Scholar 

  43. Jiang YQ, Xiao LL, Zhao L, Chen X, Wang XR, Wong KY (2006) Optical biosensor for the determination of BOD in seawater. Talanta 70:97–103

    CAS  Google Scholar 

  44. Lin L, Xiao LL, Huang S, Zhao L, Cui JS, Wang XH, Chen X (2006) Novel BOD optical fiber biosensor based on co-immobilized microorganisms in ormosils matrix. Biosens Bioelectron 21:1703–1709

    CAS  Google Scholar 

  45. Neufeld T, Biran D, Popovtzer R, Erez T, Ron EZ, Rishpon J (2006) Genetically engineered pfabA pfabR bacteria: an electrochemical whole cell biosensor for detection of water toxicity. Anal Chem 78:4952–4956

    CAS  Google Scholar 

  46. Sakaguchi T, Kitagawa K, Ando T, Murakami Y, Morita Y, Yamamura A, Yokoyama K, Tamiya E (2003) A rapid BOD sensing system using luminescent recombinants of Escherichia coli. Biosens Bioelectron 19:115–121

    CAS  Google Scholar 

  47. Sakaguchi T, Morioka Y, Yamasaki M, Iwanaga J, Beppu K, Maeda H, Morita Y, Tamiya E (2007) Rapid and onsite BOD sensing system using luminous bacterial cells-immobilized chip. Biosens Bioelectron 22:1345–1350

    CAS  Google Scholar 

  48. Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin J, Liu WS, Park J, Ellis C, Ganguly S, Konchar S, Cluderay J, Leslie R, Wilson S, Sarau HM (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400:261–265

    CAS  Google Scholar 

  49. Pietrangelo A (2002) Mechanism of iron toxicity. Adv Exp Med Biol 509:19–43

    CAS  Google Scholar 

  50. Pietrangelo A, Montosi G, Garuti C, Contri M, Giovannini F, Ceccarelli D, Masini A (2002) Iron-induced oxidant stress in nonparenchymal liver cells: mitochondrial derangement and fibrosis in acutely iron-dosed gerbils and its prevention by silybin. J Bioenerg Biomembr 34:67–79

    CAS  Google Scholar 

  51. Rudolph AS, Reasor J (2001) Cell and tissue based technologies for environmental detection and medical diagnostics. Biosens Bioelectron 16:429–431

    CAS  Google Scholar 

  52. Sacco MG, Amicone L, Cato EM, Filippini D, Vezzoni P, Tripodi M (2004) Cell-based assay for the detection of chemically induced cellular stress by immortalized untransformed transgenic hepatocytes. BMC Biotechnol 4:5

    Google Scholar 

  53. Bhunia AK, Steele PJ, Westbrook DG, Bly LA, Maloney TP, Johnson MG (1994) A six-hour in vitro virulence assay for Listeria monocytogenes using myeloma and hybridoma cells from murine and human sources. Microb Pathog 16:99–110

    CAS  Google Scholar 

  54. Bhunia AK, Westbrook DG, Story R, Johnson MG (1995) Frozen stored murine hybridoma cells can be used to determine the virulence of Listeria monocytogenes. J Clin Microbiol 33:3349–3351

    CAS  Google Scholar 

  55. Meister M, Pine J, Baylor DA (1994) Multi-neuronal signals from the retina: acquisition and analysis. J Neurosci Methods 51:95–106

    CAS  Google Scholar 

  56. Segev R, Goodhouse J, Puchalla J, Berry MJ 2nd (2004) Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat Neurosci 7:1154–1161

    CAS  Google Scholar 

  57. Hafner F (2000) Cytosensor Microphysiometer: technology and recent applications. Biosens Bioelectron 15:149–158

    CAS  Google Scholar 

  58. Wang P, Xu GX, Qin LF, Xu Y, Li Y, Li R (2005) Cell-based biosensors and its application in biomedicine. Sens Actuators B Chem 108:576–584

    Google Scholar 

  59. Liu Q, Cai H, Xu Y, Xiao L, Yang M, Wang P (2007) Detection of heavy metal toxicity using cardiac cell-based biosensor. Biosens Bioelectron 22:3224–3229

    CAS  Google Scholar 

  60. Gilchrist KH, Giovangrandi L, Whittington RH, Kovacs GT (2005) Sensitivity of cell-based biosensors to environmental variables. Biosens Bioelectron 20:1397–1406

    CAS  Google Scholar 

  61. Whittington RH, Chen MQ, Giovangrandi L, Kovacs GA (2006) Temporal resolution of stimulation threshold: a tool for electrophysiologic analysis. Conf Proc IEEE Eng Med Biol Soc 1:3891–3894

    Google Scholar 

  62. Gilchrist KH (2003) Characterization and validation of cell-based biosensors. PhD dissertation, Stanford University, United States–California Retrieved January 13, 2008, from ProQuest Digital Dissertations database (Publication No. AAT 3104228), pp 3–6

    Google Scholar 

  63. Keefer EW, Gramowski A, Stenger DA, Pancrazio JJ, Gross GW (2001) Characterization of acute neurotoxic effects of trimethylolpropane phosphate via neuronal network biosensors. Biosens Bioelectron 16:513–525

    CAS  Google Scholar 

  64. Pancrazio JJ, Keefer EW, Ma W, Stenger DA, Gross GW (2001) Neurophysiologic effects of chemical agent hydrolysis products on cortical neurons in vitro. Neurotoxicology 22:393–400

    CAS  Google Scholar 

  65. Pancrazio JJ, Gray SA, Shubin YS, Kulagina N, Cuttino DS, Shaffer KM, Eisemann K, Curran A, Zim B, Gross GW, O'Shaughnessy TJ (2003) A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection. Biosens Bioelectron 18:1339–1347

    CAS  Google Scholar 

  66. Selinger JV, Pancrazio JJ, Gross GW (2004) Measuring synchronization in neuronal networks for biosensor applications. Biosens Bioelectron 19:675–683

    CAS  Google Scholar 

  67. Bhunia AK (2008) Biosensors and bio-based methods for the separation and detection of foodborne pathogens. In: Taylor S (ed) Advances in food and nutrition research. Elsevier, San Diego, Vol 54, pp 1–44

    Google Scholar 

  68. Ehret R, Baumann W, Brischwein M, Schwinde A, Stegbauer K, Wolf B (1997) Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens Bioelectron 12:29–41

    CAS  Google Scholar 

  69. Ehret R, Baumann W, Brischwein M, Schwinde A, Wolf B (1998) On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures. Med Biol Eng Comput 36:365–370

    CAS  Google Scholar 

  70. Tiruppathi C, Malik AB, Del Vecchio PJ, Keese CR, Giaever I (1992) Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci USA 89:7919–7923

    CAS  Google Scholar 

  71. Kowolenko M, Keese CR, Lawrence DA, Giaever I (1990) Measurement of macrophage adherence and spreading with weak electric fields. J Immunol Methods 127:71–77

    CAS  Google Scholar 

  72. Borkholder DA, Bao J, Maluf NI, Perl ER, Kovacs GT (1997) Microelectrode arrays for stimulation of neural slice preparations. J Neurosci Methods 77:61–66

    CAS  Google Scholar 

  73. Pancrazio JJ, Bey PP Jr, Loloee A, Manne S, Chao HC, Howard LL, Gosney WM, Borkholder DA, Kovacs GT, Manos P, Cuttino DS, Stenger DA (1998) Description and demonstration of a CMOS amplifier-based-system with measurement and stimulation capability for bioelectrical signal transduction. Biosens Bioelectron 13:971–979

    CAS  Google Scholar 

  74. Lebrun M, Mengaud J, Ohayon H, Nato F, Cossart P (1996) Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells. Mol Microbiol 21:579–592

    CAS  Google Scholar 

  75. Lundstrom I, Svensson S (1998) Biosensing with G-protein coupled receptor systems. Biosens Bioelectron 13:689–695

    CAS  Google Scholar 

  76. Subrahmanyam S, Piletsky SA, Turner AP (2002) Application of natural receptors in sensors and assays. Anal Chem 74:3942–3951

    CAS  Google Scholar 

  77. Wijesuriya DC, Rechnitz GA (1993) Biosensors based on plant and animal tissues. Biosens Bioelectron 8:155–160

    CAS  Google Scholar 

  78. Golden RJ, Noller KL, Titus-Ernstoff L, Kaufman RH, Mittendorf R, Stillman R, Reese EA (1998) Environmental endocrine modulators and human health: an assessment of the biological evidence. Crit Rev Toxicol 28:109–227

    CAS  Google Scholar 

  79. Haga T (1995) Receptor biochemistry. In: Meyers RA (ed) Molecular biology and biotechnology, a comprehensive desk reference. VCH, New York

    Google Scholar 

  80. Connolly CN, Wafford KA (2004) The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function. Biochem Soc Trans 32:529–534

    CAS  Google Scholar 

  81. Whitaker RD, Walt DR (2007) Multianalyte single-cell analysis with multiple cell lines using a fiber-optic array. Anal Chem 79:9045–9053

    CAS  Google Scholar 

  82. Robinson DR, Wu YM, Lin SF (2000) The protein tyrosine kinase family of the human genome. Oncogene 19:5548–5557

    CAS  Google Scholar 

  83. Kaczmarski RS, Mufti GJ (1991) The cytokine receptor superfamily. Blood Rev 5:193–203

    CAS  Google Scholar 

  84. Milev P, Monnerie H, Popp S, Margolis RK, Margolis RU (1998) The core protein of the chondroitin sulfate proteoglycan phosphacan is a high-affinity ligand of fibroblast growth factor-2 and potentiates its mitogenic activity. J Biol Chem 273:21439–21442

    CAS  Google Scholar 

  85. Hauck CR, Agerer F, Muenzner P, Schmitter T (2006) Cellular adhesion molecules as targets for bacterial infection. Eur J Cell Biol 85:235–242

    CAS  Google Scholar 

  86. Weiss AA, Iyer SS (2007) Glycomics aims to interpret the third molecular language of cells. Microbe 2:489–497

    Google Scholar 

  87. Hauck CR (2002) Cell adhesion receptors – signaling capacity and exploitation by bacterial pathogens. Med Microbiol Immunol 191:55–62

    CAS  Google Scholar 

  88. Patti JM, Allen BL, McGavin MJ, Hook M (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617

    CAS  Google Scholar 

  89. Schwarz-Linek U, Werner JM, Pickford AR, Gurusiddappa S, Kim JH, Pilka ES, Briggs JA, Gough TS, Hook M, Campbell ID, Potts JR (2003) Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423:177–181

    CAS  Google Scholar 

  90. Frankel G, Lider O, Hershkoviz R, Mould AP, Kachalsky SG, Candy DC, Cahalon L, Humphries MJ, Dougan G (1996) The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins. J Biol Chem 271:20359–20364

    CAS  Google Scholar 

  91. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB (1997) Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511–520

    CAS  Google Scholar 

  92. Kenny B (1999) Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol Microbiol 31:1229–1241

    CAS  Google Scholar 

  93. Hauck CR, Meyer TF (2003) 'Small' talk: Opa proteins as mediators of Neisseria-host-cell communication. Curr Opin Microbiol 6:43–49

    CAS  Google Scholar 

  94. Steinberg MS, McNutt PM (1999) Cadherins and their connections: adhesion junctions have broader functions. Curr Opin Cell Biol 11:554–560

    CAS  Google Scholar 

  95. Pertz O, Bozic D, Koch AW, Fauser C, Brancaccio A, Engel J (1999) A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J 18:1738–1747

    CAS  Google Scholar 

  96. Bierne H, Sabet C, Personnic N, Cossart P (2007) Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect 9:1156–1166

    CAS  Google Scholar 

  97. Braun L, Ghebrehiwet B, Cossart P (2000) gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J 19:1458–1466

    CAS  Google Scholar 

  98. Shen Y, Naujokas M, Park M, Ireton K (2000) InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501–510

    CAS  Google Scholar 

  99. Gaillard JL, Berche P, Frehel C, Gouin E, Cossart P (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65:1127–1141

    CAS  Google Scholar 

  100. Mengaud J, Ohayon H, Gounon P, Mege RM, Cossart P (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932

    CAS  Google Scholar 

  101. Dramsi S, Cossart P (1998) Intracellular pathogens and the actin cytoskeleton. Annu Rev Cell Dev Biol 14:137–166

    CAS  Google Scholar 

  102. Lasa I, Cossart P (1996) Actin-based bacterial motility: towards a definition of the minimal requirements. Trends Cell Biol 6:109–114

    CAS  Google Scholar 

  103. Pandiripally VK, Westbrook DG, Sunki GR, Bhunia AK (1999) Surface protein p104 is involved in adhesion of Listeria monocytogenes to human intestinal cell line, Caco-2. J Med Microbiol 48:117–124

    CAS  Google Scholar 

  104. Santiago NI, Zipf A, Bhunia AK (1999) Influence of temperature and growth phase on expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl Environ Microbiol 65:2765–2769

    CAS  Google Scholar 

  105. Wampler JL, Kim KP, Jaradat Z, Bhunia AK (2004) Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect Immun 72:931–936

    CAS  Google Scholar 

  106. Jaradat ZW, Bhunia AK (2003) Adhesion, invasion, and translocation characteristics of Listeria monocytogenes serotypes in Caco-2 cell and mouse models. Appl Environ Microbiol 69:3640–3645

    CAS  Google Scholar 

  107. Kim KP, Jagadeesan B, Burkholder KM, Jaradat ZW, Wampler JL, Lathrop AA, Morgan MT, Bhunia AK (2006) Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol Lett 256:324–332

    CAS  Google Scholar 

  108. Campadelli-Fiume G (2000) Virus receptor arrays, CD46 and human herpesvirus 6. Trends Microbiol 8:436–438

    CAS  Google Scholar 

  109. Gruenheid S, Gatzke L, Meadows H, Tufaro F (1993) Herpes simplex virus infection and propagation in a mouse L cell mutant lacking heparan sulfate proteoglycans. J Virol 67:93–100

    CAS  Google Scholar 

  110. Ugolini S, Mondor I, Sattentau QJ (1999) HIV-1 attachment: another look. Trends Microbiol 7:144–149

    CAS  Google Scholar 

  111. Spear PG, Shieh MT, Herold BC, WuDunn D, Koshy TI (1992) Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. Adv Exp Med Biol 313:341–353

    CAS  Google Scholar 

  112. Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700

    CAS  Google Scholar 

  113. Schroeder K, Neagle B (1996) FLIPR: a new instrument for accurate, high throughput optical screening. J Biomol Screen 1:75

    CAS  Google Scholar 

  114. Gonzalez JE, Oades K, Leychkis Y, Harootunian A, Negulescu PA (1999) Cell-based assays and instrumentation for screening ion-channel targets. Drug Discov Today 4:431–439

    CAS  Google Scholar 

  115. Kiss L, Bennett PB, Uebele VN, Koblan KS, Kane SA, Neagle B, Schroeder K (2003) High throughput ion-channel pharmacology: planar-array-based voltage clamp. Assay Drug Dev Technol 1:127–135

    CAS  Google Scholar 

  116. Zuck P, Lao Z, Skwish S, Glickman JF, Yang K, Burbaum J, Inglese J (1999) Ligand-receptor binding measured by laser-scanning imaging. Proc Natl Acad Sci USA 96:11122–11127

    CAS  Google Scholar 

  117. Lee JY, Miraglia S, Yan X, Swartzman E, Cornell-Kennon S, Mellentin-Michelotti J, Bruseo C, France DS (2003) Oncology drug discovery applications using the FMAT 8100 HTS system. J Biomol Screen 8:81–88

    Google Scholar 

  118. Conway BR, Minor LK, Xu JZ, Gunnet JW, DeBiasio R, D'Andrea MR, Rubin R, DeBiasio R, Giuliano K, Zhou LB, Demarest KT (1999) Quantification of G-protein coupled receptor internalization using G-protein coupled receptor-green fluorescent protein conjugates with the ArrayScan (TM) high-content screening system. J Biomol Screen 4:75–86

    CAS  Google Scholar 

  119. Gasparri F, Mariani M, Sola F, Galvani A (2004) Quantification of the proliferation index of human dermal fibroblast cultures with the ArrayScan high-content screening reader. J Biomol Screen 9:232–243

    CAS  Google Scholar 

  120. Trask OJ Jr, Baker A, Williams RG, Nickischer D, Kandasamy R, Laethem C, Johnston PA, Johnston PA (2006) Assay development and case history of a 32K-biased library high-content MK2-EGFP translocation screen to identify p38 mitogen-activated protein kinase inhibitors on the ArrayScan 3.1 imaging platform. Methods Enzymol 414:419–439

    CAS  Google Scholar 

  121. Williams RG, Kandasamy R, Nickischer D, Trask OJ Jr, Laethem C, Johnston PA, Johnston PA (2006) Generation and characterization of a stable MK2-EGFP cell line and subsequent development of a high-content imaging assay on the Cellomics ArrayScan platform to screen for p38 mitogen-activated protein kinase inhibitors. Methods Enzymol 414:364–389

    CAS  Google Scholar 

  122. Liu Q, Huang H, Cai H, Xu Y, Li Y, Li R, Wang P (2007) Embryonic stem cells as a novel cell source of cell-based biosensors. Biosens Bioelectron 22:810–815

    CAS  Google Scholar 

  123. May KML, Wang Y, Bachas LG, Anderson KW (2004) Development of a whole-cell-based biosensor for detecting histamine as a model toxin. Anal Chem 76:4156–4161

    CAS  Google Scholar 

  124. Davila JC, Cezar GG, Thiede M, Strom S, Miki T, Trosko J (2004) Use and application of stem cells in toxicology. Toxicol Sci 79:214–223

    CAS  Google Scholar 

  125. Raucy JL, Mueller L, Duan K, Allen SW, Strom S, Lasker JM (2002) Expression and induction of CYP2C P450 enzymes in primary cultures of human hepatocytes. J Pharmacol Exp Ther 302:475–482

    CAS  Google Scholar 

  126. Lavon N, Benvenisty N (2003) Differentiation and genetic manipulation of human embryonic stem cells and the analysis of the cardiovascular system. Trends Cardiovasc Med 13:47–52

    CAS  Google Scholar 

  127. Rambhatla L, Chiu CP, Kundu P, Peng Y, Carpenter MK (2003) Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 12:1–11

    Google Scholar 

  128. Trosko JE (2003) The role of stem cells and gap junctional intercellular communication in carcinogenesis. J Biochem Mol Biol 36:43–48

    CAS  Google Scholar 

  129. Hanson GT, Hanson BJ (2008) Fluorescent probes for cellular assays. Comb Chem High Throughput Screen 11:505–513

    CAS  Google Scholar 

  130. Wang H-Y, Bao N, Lu C (2008) A microfluidic cell array with individually addressable culture chambers. Biosens Bioelectron 24:613–617

    CAS  Google Scholar 

  131. Lee RM, Choi H, Shin J-S, Kim K, Yoo K-H (2009) Distinguishing between apoptosis and necrosis using a capacitance sensor. Biosens Bioelectron 24(8):2586–2591

    CAS  Google Scholar 

  132. Tong C, Shi B, Xiao X, Liao H, Zheng Y, Shen G, Tang D, Liu X (2009) An annexin V based biosensor for quantitatively detecting early apoptotic cells. Biosens Bioelectron 24(6):1777–1782

    CAS  Google Scholar 

  133. Gil GC, Mitchell RJ, Chang ST, Gu MB (2000) A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosens Bioelectron 15:23–30

    CAS  Google Scholar 

  134. Hay AG, Rice JF, Applegate BM, Bright NG, Sayler GS (2000) A bioluminescent whole-cell reporter for detection of 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol in soil. Appl Environ Microbiol 66:4589–4594

    CAS  Google Scholar 

  135. Rider TH, Petrovick MS, Nargi FE, Harper JD, Schwoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J, Hollis MA (2003) A B cell-based sensor for rapid identification of pathogens. Science 301:213–215

    CAS  Google Scholar 

  136. Shingleton JT, Applegate BA, Baker AJ, Sayler GS, Bienkowski PR (2001) Quantification of toluene dioxygenase induction and kinetic modeling of TCE cometabolism by Pseudomonas putida TVA8. Biotechnol Bioeng 76:341–350

    CAS  Google Scholar 

  137. O’Riordan TC, Buckley D, Ogurtsov V, O'Connor R, Papkovsky DB (2000) A cell viability assay based on monitoring respiration by optical oxygen sensing. Anal Biochem 278:221–227

    Google Scholar 

  138. Sturzl M, Konrad A, Sander G, Wies E, Neipel F, Naschberger E, Reipschlager S, Gonin-Laurent N, Horch RE, Kneser U, Hohenberger W, Erfle H, Thurau M (2008) High throughput screening of gene functions in mammalian cells using reversely transfected cell arrays: review and protocol. Comb Chem High Throughput Screen 11:159–172

    Google Scholar 

  139. Durick K, Negulescu P (2001) Cellular biosensors for drug discovery. Biosens Bioelectron 16:587–592

    CAS  Google Scholar 

  140. Kumar HS, Karunasagar I, Teizou T, Shima K, Yamasaki S (2004) Characterisation of Shiga toxin-producing Escherichia coli (STEC) isolated from seafood and beef. FEMS Microbiol Lett 233:173–178

    CAS  Google Scholar 

  141. Noda M, Yutsudo T, Nakabayashi N, Hirayama T, Takeda Y (1987) Purification and some properties of Shiga-like toxin from Escherichia coli 0157:H7 that is immunologically identical to Shiga toxin. Microb Pathog 2:339–349

    CAS  Google Scholar 

  142. Picot L, Chevalier S, Mezghani-Abdelmoula S, Merieau A, Lesouhaitier O, Leroux P, Cazin L, Orange N, Feuilloley MG (2003) Cytotoxic effects of the lipopolysaccharide from Pseudomonas fluorescens on neurons and glial cells. Microb Pathog 35:95–106

    CAS  Google Scholar 

  143. Ngamwongsatit P, Banada PP, Panbangred W, Bhunia AK (2008) WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Methods 73:211–215

    CAS  Google Scholar 

  144. Sakurazawa T, Ohkusa T (2005) Cytotoxicity of organic acids produced by anaerobic intestinal bacteria on cultured epithelial cells. J Gastroenterol 40:600–609

    CAS  Google Scholar 

  145. Saliba AM, de Assis MC, Nishi R, Raymond B, Marques Ede A, Lopes UG, Touqui L, Plotkowski MC (2006) Implications of oxidative stress in the cytotoxicity of Pseudomonas aeruginosa ExoU. Microbes Infect 8:450–459

    CAS  Google Scholar 

  146. Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 14:61–86

    CAS  Google Scholar 

  147. Liu J, Kuznetsova LA, Edwards GO, Xu J, Ma M, Purcell WM, Jackson SK, Coakley WT (2007) Functional three-dimensional HepG2 aggregate cultures generated from an ultrasound trap: comparison with HepG2 spheroids. J Cell Biochem 102:1180–1189

    CAS  Google Scholar 

  148. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    CAS  Google Scholar 

  149. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610

    CAS  Google Scholar 

  150. Nickerson C, Richter E, Ott C (2007) Studying host–pathogen interactions in 3-D: organotypic models for infectious disease and drug development. J Neuroimmune Pharmacol 2:26–31

    Google Scholar 

  151. Smith YC, Grande KK, Rasmussen SB, O'Brien AD (2006) Novel three-dimensional organoid model for evaluation of the interaction of uropathogenic Escherichia coli with terminally differentiated human urothelial cells. Infect Immun 74:750–757

    CAS  Google Scholar 

  152. Curtis T, Naal RMZG, Batt C, Tabb J, Holowka D (2008) Development of a mast cell-based biosensor. Biosens Bioelectron 23:1024–1031

    CAS  Google Scholar 

  153. Straub TM, KHz B, Orosz-Coghlan P, Dohnalkova A, Mayer BK, Bartholomew RA, Valdez CO, Bruckner-Lea CJ, Gerba CP, Abbaszadegan M, Nickerson CA (2007) In vitro cell culture infectivity assay for human Noroviruses. Emerg Infect Dis 13:396–403

    Google Scholar 

  154. Lee M-Y, Kumar RA, Sukumaran SM, Hogg MG, Clark DS, Dordick JS (2008) Three-dimensional cellular microarray for high-throughput toxicology assays. Proc Nat Acad Sci USA 105:59–63

    CAS  Google Scholar 

  155. Campbell CE, Laane MM, Haugarvoll E, Giaever I (2007) Monitoring viral-induced cell death using electric cell-substrate impedance sensing. Biosens Bioelectron 23:536–542

    CAS  Google Scholar 

  156. Moschopoulou G, Vitsa K, Bem F, Vassilakos N, Perdikaris A, Blouhos P, Yialouris C, Frosyniotis D, Anthopoulos I, Mangana O, Nomikou K, Rodeva V, Kostova D, Grozeva S, Michaelides A, Simonian A, Kintzios S (2008) Engineering of the membrane of fibroblast cells with virus-specific antibodies: a novel biosensor tool for virus detection. Biosens Bioelectron 24:1033–1036

    Google Scholar 

  157. Relman DA (2003) Shedding light on microbial detection. N Engl J Med 349:2162–2163

    CAS  Google Scholar 

  158. Shroyer ML, Bhunia AK (2003) Development of a rapid 1-h fluorescence-based cytotoxicity assay for Listeria species. J Microbiol Methods 55:35–40

    CAS  Google Scholar 

  159. Zhao J, Jedlicka SS, Lannu JD, Bhunia AK, Rickus JL (2006) Liposome-doped nanocomposites as artificial cell-based biosensors: detection of listeriolysin O. Biotechnol Prog 22:32–37

    CAS  Google Scholar 

  160. Barak LS, Salahpour A, Zhang X, Masri B, Sotnikova TD, Ramsey AJ, Violin JD, Lefkowitz RJ, Caron MG, Gainetdinov RR (2008) Pharmacological characterization of membrane-expressed human trace amine-associated receptor 1 (TAAR1) by a bioluminescence resonance energy transfer cAMP biosensor. Mol Pharmacol 74:585–594

    CAS  Google Scholar 

  161. Rogers KR, Valdes JJ, Eldefrawi ME (1991) Effects of receptor concentration, media pH and storage on nicotinic receptor-transmitted signal in a fiber-optic biosensor. Biosens Bioelectron 6:1–8

    CAS  Google Scholar 

  162. Hanslick JL, Lau K, Noguchi KK, Olney JW, Zorumski CF, Mennerick S, Farber NB (2009) Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiol Dis 34(1):1–10

    CAS  Google Scholar 

  163. Korbutt GS, Rayat GR, Ezekowitz J, Rajotte RV (1997) Cryopreservation of rat pancreatic islets: effect of ethylene glycol on islet function and cellular composition. Transplantation 64:1065–1070

    CAS  Google Scholar 

  164. Gilchrist KH, Barker VN, Fletcher LE, DeBusschere BD, Ghanouni P, Giovangrandi L, Kovacs GT (2001) General purpose, field-portable cell-based biosensor platform. Biosens Bioelectron 16:557–564

    CAS  Google Scholar 

  165. Baust JM, Van B, Baust JG (2000) Cell viability improves following inhibition of cryopreservation-induced apoptosis. In Vitro Cell Dev Biol Anim 36:262–270

    CAS  Google Scholar 

  166. Nakagawa T, Yamaguchi M (2005) Overexpression of regucalcin suppresses apoptotic cell death in cloned normal rat kidney proximal tubular epithelial NRK52E cells: change in apoptosis-related gene expression. J Cell Biochem 96:1274–1285

    CAS  Google Scholar 

  167. Kovacs GT (2003) Electronic sensors with living cellular components. Proc IEEE 91:915–929

    CAS  Google Scholar 

  168. Keusgen M (2002) Biosensors: new approaches in drug discovery. Naturwissenschaften 89:433–444

    CAS  Google Scholar 

  169. Burrell GA, Seibert FM (1916) Gases found in coal mines. Miners’ Circ 14

    Google Scholar 

  170. Schwabe CW (1984) Animals as monitors of the environment. Veterinary Medicine and Human Health, 3rd ed. Williams and Wilkins, Baltimore, MD, USA, pp 562–578

    Google Scholar 

  171. Veterinarian (1874) The effects of the fog on cattle in London. Veterinarian 47:1–4

    Google Scholar 

  172. Veterinarian (1874) The effects of the recent fog on the Smithfield Show and the London dairies. Veterinarian 47:32–33

    Google Scholar 

  173. Haring CM, Meyer KF (1915) Investigations of livestock conditions with horses in the Selby smoke zone. Calif Hurrau Mines Bull 98

    Google Scholar 

  174. Holm LW, Wheat JD, Rhode EA, Firch G (1953) Treatment of chronic lead poisoning in horses with calcium disodium ethylenediaminetetreacetate. J Am Vet Assoc 123:383–388

    CAS  Google Scholar 

  175. Kurland LT, Faro SN, Siedler H (1960) Minamata disease. World Neurol 1:370–395

    CAS  Google Scholar 

  176. Kuratsune M, Yoshimura T, Matsuzaka J, Yamaguchi A (1972) Epidemiologic study on Yusho, a poisoning caused by ingestion of rice oil contaminated with a commercial brand of polychlorinated biphenyls. Environ Health Perspect 1:119–128

    CAS  Google Scholar 

  177. Van Kampen KR, James LF, Rasmussen J, Huffaker RH, Fawcett MO (1969) Organic phosphate poisoning of sheep in Skull Valley, Utah. J Am Vet Med Asso 154:623–630

    Google Scholar 

  178. Case AA, Coffman JR (1973) Waste oil: toxic for horses. Vet Clin North Am 3:273–277

    CAS  Google Scholar 

  179. Carter CD, Kimbrough RD, Liddle JA (1975) Tetrachlorodibenzodioxin: an accidental poisoning episode in horse arenas. Science 188:738–740

    CAS  Google Scholar 

  180. Jackson TF, Halbert FL (1974) A toxic syndrome associated with the feeding of polybrominated biphenyl-contaminated protein concentrate to dairy cattle. J Am Vet Med Asso 165:437–439

    CAS  Google Scholar 

  181. Welborn JA, Allen R, Byker G, DeGrow S, Hertel J, Noordhoek R, Koons D (1975) The contamination crisis in Michigan: polybrominated biphenyls. Senate Special Investigating Committee, Lansing, MI

    Google Scholar 

  182. Guillette LJ Jr, Gross TS, Masson GR, Matter JM, Percival HF, Woodward AR (1994) Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ Health Perspect 102:680–688

    CAS  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory was supported through a cooperative agreement with the Agricultural Research Service of the US Department of Agriculture (USDA) project number 1935-42000-035, the Center for Food Safety and Engineering at Purdue University, and USDA-NRI (2005-35603-16338). BF is supported by the USDA National Needs Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Bhunia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Banerjee, P., Franz, B., Bhunia, A.K. (2010). Mammalian Cell-Based Sensor System. In: Belkin, S., Gu, M. (eds) Whole Cell Sensing Systems I. Advances in Biochemical Engineering / Biotechnology, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_21

Download citation

Publish with us

Policies and ethics