Skip to main content

Acute and Chronic Endothelial Dysfunction: Implications for the Development of Heart Failure

  • Chapter
  • 151 Accesses

Abstract

Heart failure has been characterized by a reduction in cardiac contractile function resulting in reduced cardiac output. The clinical symptoms including mild tachycardia, reduced arterial pressure, increased venous or filling pressure and exercise intolerance have conceptually, to a large degree, been attributed to cardiac myocyte dysfunction. More recently, a vascular component has been recognized to contribute to heart failure. Among the most studied vascular mechanisms that might contribute to the development of heart failure has been the reduced production of nitric oxide or the reduced bioactivity of NO associated with both basic models of heart failure and disease in patients. The still evolving concept that heart failure is a cytokine activated state has, in addition, focused attention on the possibility that the cytokine driven isoform of NO synthase (NOS), iNOS, may produce sufficient quantities of NO to actually suppress cardiac myocyte function contributing to the reduced inotropic state in the failing heart. Thus, our view of the role of NO in the development of heart failure has evolved from simply a reduction in production of NO in blood vessels, to altered substrate availability (i.e. L-arginine), to increased scavenging of NO by superoxide union, to increased production of NO from iNOS. As these concepts develop, our approach to the therapeutics of heart failure has also progressed with the recognition of the need to develop treatments directed towards addressing one or more of these etiologies. This review will focus on these aspects of the involvement of NO in the development of heart failure and some of the treatments that have developed from our understanding of the basic biology of NO to address these pathohysiologic states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cowie MR, Mosterd A, Wood DA, Deckers JW, Poole-Wilson PA, Sutton GC, Grobbee DE. The epidemiology of heart failure. Eur Heart J 1997;18:208–225.

    CAS  PubMed  Google Scholar 

  2. Hambrecht R, Fiehn E, Weigl C, Gielen S, Hamann C, Kaiser R, Yu J, Adams V, Niebauer J, Schuler G. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 1998;98:2709–2715.

    CAS  PubMed  Google Scholar 

  3. Zelis R, Flaim SF. Alterations in vasomotor tone in congestive heart failure. Prog Cardiovasc Dis 1982;24:437–459.

    CAS  PubMed  Google Scholar 

  4. Kubo SH, Rector TS, Bank AJ, Williams RE, Heifetz SM. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 1991;84:1589–1596.

    CAS  PubMed  Google Scholar 

  5. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: Evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 1986;73:615–621.

    CAS  PubMed  Google Scholar 

  6. Francis GS, Rector TS, Cohn JN. Sequential neurohumoral measurements in patients with congestive heart failure. Am Heart J 1988;116:1464–1468.

    CAS  PubMed  Google Scholar 

  7. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–526.

    Article  CAS  PubMed  Google Scholar 

  8. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987;84:9265–9269.

    CAS  PubMed  Google Scholar 

  9. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–376.

    Article  CAS  PubMed  Google Scholar 

  10. Cherry PD, Furchgott RF, Zawadzki JV, Jothianandan D. Role of endothelial cells in relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci USA 1982;79:2106–2110.

    CAS  PubMed  Google Scholar 

  11. Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986;250:H1145–H1149.

    CAS  PubMed  Google Scholar 

  12. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993;329:2002–2012.

    Article  CAS  PubMed  Google Scholar 

  13. Kelly RA, Balligand JL, Smith TW. Nitric oxide and cardiac function. Circ Res 1996;79:363–380.

    CAS  PubMed  Google Scholar 

  14. Schwarz P, Diem R, Dun NJ, Forstermann U. Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circ Res 1995;77:841–848.

    CAS  PubMed  Google Scholar 

  15. Ishibashi Y, Shimada T, Murakami Y, Takahashi N, Sakane T, Sugamori T, Ohata S, Inoue S, Ohta Y, Nakamura K, Shimizu H, Katoh H, Hashimoto M. An inhibitor of inducible nitric oxide synthase decreases forearm blood flow in patients with congestive heart failure. J Am Coll Cardiol 2001;38:1470–1476.

    Article  CAS  PubMed  Google Scholar 

  16. Habib FM, Springall DR, Davies GJ, Oakley CM, Yacoub MH, Polak JM. Tumour necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 1996;347:1151–1155.

    Article  CAS  PubMed  Google Scholar 

  17. Haywood GA, Tsao PS, der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne CD, Rickenbacher PR, Bishopric NH, Cooke JP, McKenna WJ, Fowler MB. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996;93:1087–1094.

    CAS  PubMed  Google Scholar 

  18. Nathan C, Xie QW. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994;78:915–918.

    Article  CAS  PubMed  Google Scholar 

  19. Elsner D, Muntze A, Kromer EP, Reigger GAA. Systemic vasoconstriction induced by inhibition of nitric oxide synthesis is attenuated in conscious dogs with heart failure. Cardiovasc Res 1991;25:438–440.

    CAS  PubMed  Google Scholar 

  20. Kaiser L, Spickard RC, Oliver NB. Heart failure depresses endothelium-dependent responses in canine femoral artery. Am J Physiol 1989;256:H962–H967.

    CAS  PubMed  Google Scholar 

  21. Shen W, Lundborg M, Wang J, Stewart J, Xu X, Ochoa M, Hintze TH. Role of EDRF in the regulation of regional blood flow during exercise. J Appl Physiol 1994;77:165–172.

    CAS  PubMed  Google Scholar 

  22. Hintze TH, Wang J, Seyedi N, Wolin M. Myocardial hypertrophy and failure: Association between alterations in the production or release of EDRF/NO and myocardial dysfunction. In: Bevan J, Kaley G, Rubayani G, eds. Flow-Dependent Regulation of Vascular Function. Oxford Press, 1995.

    Google Scholar 

  23. Larosa G, Forrester C. Coronary B-adrenoreceptor function is modified by the endothelium in heart failure. J Vasc Res 1996;33:62–70.

    CAS  PubMed  Google Scholar 

  24. Redfield MM, Aarhus LL, Wright RS, Burnett JC. Cardiorenal and neurohumoral function in a canine model of early left ventricular dysfunction. Circulation 1993;87:2016–2022.

    CAS  PubMed  Google Scholar 

  25. Zhao G, Shen W, XU X, Ochoa M, Bernstein R. Hintze TH. Selective impairment of vagal-mediated NO dependent coronary vasodilation in conscious dogs after pacing induced heart failure. Circulation 1995;91:2655–2663.

    CAS  PubMed  Google Scholar 

  26. Shen W, Wang J, Ochoa M, XU X, Hintze TH. Role of endothelium-derived relaxing factor in parasympathetic coronary vasodilation following carotid chemoreflex activation in conscious dogs. Am J Physiol 1994;267:H605–H613.

    CAS  PubMed  Google Scholar 

  27. Zhang X, Recchia F, Bernstein RD, XU X, Nasjletti, Hintze TH. Kinin-mediated coronary nitric oxide production contributes to the therapeutic actions of ACE and NEP inhibitors and amlodipine in the treatment of heart failure. JPET 1999;288:742–751.

    CAS  Google Scholar 

  28. Sun D, Huang A, Zhao G, Bernstein RD, Forfia P, XU X, Koller A, Kaley G, Hintze TH. Reduced NO-dependent arteriolar dilation during the development of cardiomyopathy. Am J Physiol 2000;278:H461–H468.

    CAS  Google Scholar 

  29. Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu XB, Hintze TH. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in conscious dogs. Circ Res 1998;83:969–979.

    CAS  PubMed  Google Scholar 

  30. Tada H, Thompson CI, Recchia FA, Loke KE, Ochoa M, Smith CJ, Shesely EG, Kaley G, Hintze TH. Myocardial glucose uptake is regulated by nitric oxide via endothelial nitric oxide synthase in the Langendorff Mouse heart. Circ Res 2000;86:270–278.

    CAS  PubMed  Google Scholar 

  31. Recchia FA, Osorio JC, Chandler MP, Xu X, Panchal AR, Lopashuk GD, Hintze TH, Stanley WC. Reduced synthesis of NO causes marked alterations in myocardial substrate metabolism in conscious dogs. Am J Physiol 2002;282:E197–E206.

    CAS  Google Scholar 

  32. Smith CJ, Sun D, Hoegler C, Zhao G, XU X, Kobari Y, Pritchard K, Sessa WC, Hintze TH. Reduced gene expression of vascular nitric oxide synthase and cyclooxygenase-1 in heart failure. Circ Res 1996;78:58–64.

    CAS  PubMed  Google Scholar 

  33. Zhang X, Tada H, Wang Z, Hintze TH. cAMP signal transduction: A potential compensatory pathway for coronary endothelial nitric oxide production after heart failure. ATVB 2002;22:1273–1278.

    CAS  Google Scholar 

  34. Wang J, Wolin MS, Hintze TH. Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 1993;73:829–838.

    CAS  PubMed  Google Scholar 

  35. Bernstein RD, Ochoa FY, Xu X, Forfia P, Shen W, Thompson CI, Hintze TH. Function ad production of nitric oxide in the coronary circulation of the conscious dog during exercise. Circ Res 1996;79:840–848.

    CAS  PubMed  Google Scholar 

  36. Zhao G, Zhang X, Xu X, Ochoa M, Hintze TH. Exercise training enhances reflex cholinergic, NO dependent coronary dilation in conscious dogs. Circ Res 1997;80:868–876.

    CAS  PubMed  Google Scholar 

  37. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial nitric oxide gene expression. Circ Res 1994;74:349–353.

    CAS  PubMed  Google Scholar 

  38. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effect of an angiotensin-converting-enzyme inhibitor, ramapril, on cardiovascular events in high-risk patients. N Engl J Med 2000;342:201–202.

    Google Scholar 

  39. Zhang X, Xie Y, Nasjletti A, Xu X, Wolin MS, Hintze TH. ACE inhibitors stimulate nitric oxide production to modulate myocardial oxygen consumption. Circulation 1997;95:176–182.

    PubMed  Google Scholar 

  40. Kichuk MR, Seyedi N, X Zhang, Marboe CC, Michler RE, Addonizio LJ, Kaley G, Nasjletti A, Hintze TH. Regulation of nitric oxide production in human coronary microvessels and the contribution of local kinin formation. Circulat 1996;94:44–51.

    CAS  Google Scholar 

  41. Zhang X, Hintze TH. Amlodipine releases nitric oxide from canine coronary microvessels-an unexpected mechanism of action of a calcium-channel blocking agent. Circulat 1998;97:576–580.

    CAS  Google Scholar 

  42. Zhang X, Kichuk MR, Mital S, Oz M, Michler RE, Nasjletti A, Kaley G, Hintze TH. Amlodipine promotes kinin-mediated nitric oxide production in coronary microvessels from failing human heart. Am J Cardiol 1999;84:27L–33L.

    Article  CAS  PubMed  Google Scholar 

  43. Lauf U, LaFata V, Liao JK. Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxiamediated downregulation of endotheial nitric oxide synthase. J Biol Chem 1997;272:31725–31729.

    Google Scholar 

  44. Mital S, X Zhang, G Zhao, Bernstein RD, Smith CJ, Fulton DL, Sessa WC, Liao JK, Hintze TH. Simvastatin upregulates coronary vascular nitric oxide synthase and nitric oxide production in conscious dogs. Am J Physiol 2000;279:H2649–H2657.

    CAS  Google Scholar 

  45. Mital S, Magneson A, Loke KE, Liao J, Forfia P, Hintze TH. Simvastatin acts synergistically with ACE inhibitors and amlodipine to decrease oxygen consumption in the rat heart. J Cardiovas Pharm 2000;36:248–254.

    CAS  Google Scholar 

  46. Trochu J-N, Mital S, Xu X, Ochoa M, Liao J, Recchia FA, Hintze TH. Preservation of NO production by stains: A new therapy for the treatment of heart failure. FASEB J 2001;15:A783 (abstract).

    Google Scholar 

  47. Fulton D, Gratto JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke T, Papapetropoulos A, Sessa WC. Regulation of endothelium-derived nitric oxide production by protein kinase Akt. Nature 1999;399:597–601.

    CAS  PubMed  Google Scholar 

  48. Dimmler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosporylation. Nature 1999;399:601–605.

    Google Scholar 

  49. Anggard E. Nitric oxide: Mediator, murderer, and medicine. Lancet 1994;343:1199–1206.

    CAS  PubMed  Google Scholar 

  50. Hirooka Y, Imaizumi T, Tagawa T, Shiramoto M, Endo T, Ando S, Takeshita A. Effects of L-arginine on impaired acetylcholine-induced and ischemic vasodilation of the forearm in patients with heart failure. Circulation 1994;90:658–668.

    CAS  PubMed  Google Scholar 

  51. Koifman B, Wollman Y, Bogomolny N, Chernichowsky T, Finkelstein A, Peer G, Scherez J, Blum M, Laniado S, Iaina A. Improvement of cardiac performance by intravenous infusion of L-arginine in patients with moderate congestive heart failure. J Am Coll Cardiol 1995;26:1251–1256.

    Article  CAS  PubMed  Google Scholar 

  52. Kanaya Y, Nakamura M, Kobayashi N, Hiramori K. Effects of L-arginine on lower limb vasodilator reserve and exercise capacity in patients with chronic heart failure. Heart 1999;81:512–517.

    CAS  PubMed  Google Scholar 

  53. Watanabe G, Tomiyama H, Doba N. Effects of oral administration of L-arginine on renal function in patients with heart failure. J Hypertens 2000;18:229–234.

    Article  CAS  PubMed  Google Scholar 

  54. Rector TS, Bank AJ, Mullen KA, Tschumperlin LK, Sih R, Pillai K, Kubo SH. Randomized, double-blind, placebo-controlled study of supplemental oral L-arginine in patients with heart failure. Circulation 1996;93:2135–2141.

    CAS  PubMed  Google Scholar 

  55. Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, Schuler G. Correction of endothelial dysfunction in chronic heart failure: Additional effects of exercise training and oral L-arginine supplementation. J Am Coll Cardiol 2000;35:706–713.

    Article  CAS  PubMed  Google Scholar 

  56. Chin-Dusting JP, Kaye DM, Lefkovits J, Wong J, Bergin P, Jennings GL. Dietary supplementation with L-arginine fails to restore endothelial function in forearm resistance arteries of patients with severe heart failure. J Am Coll Cardiol 1996;27:1207–1213.

    Article  CAS  PubMed  Google Scholar 

  57. Kubes P, Kanwar S, Niu XF, Gaboury JP. Nitric oxide synthesis inhibition induces leukocyte adhesion via superoxide and mast cells. FASEB J 1993;7:1293–1299.

    CAS  PubMed  Google Scholar 

  58. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993;91:2546–2551.

    CAS  Google Scholar 

  59. Toutouzas PC, Tousoulis D, Davies GJ. Nitric oxide synthesis in atherosclerosis. Eur Heart J 1998;19:1504–1511.

    Article  CAS  PubMed  Google Scholar 

  60. McDonald KK, Zharikov S, Block ER, Kilberg MS. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the “arginine paradox”. J Biol Chem 1997;272:31213–31216.

    CAS  PubMed  Google Scholar 

  61. Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T. Increased endogenous nitric oxide synthase inhibitor in patients with congestive heart failure. Life Sci 1998;62:2425–2430.

    Article  CAS  PubMed  Google Scholar 

  62. Bode-Boger SM, Boger RH, Kienke S, Junker W, Frolich JC. Elevated L-arginine/dimethylarginine ratio contributes to enhanced systemic NO production by dietary L-arginine in hypercholesterolemic rabbits. Biochem Biophys Res Commun 1996;219:598–603.

    CAS  PubMed  Google Scholar 

  63. Kaye DM, Ahlers BA, Autelitano DJ, Chin-Dusting JP. In vivo and in vitro evidence for impaired arginine transport in human heart failure. Circulation 2000;102:2707–2712.

    CAS  PubMed  Google Scholar 

  64. Buga GM, Singh R, Pervin S, Rogers NE, Schmitz DA, Jenkinson CP, Cederbaum SD, Ignarro LJ. Arginase activity in endothelial cells: Inhibition by NG-hydroxy-L-arginine during high-output NO production. Am J Physiol 1996;271:H1988–H1998.

    CAS  PubMed  Google Scholar 

  65. Arnal JF, Munzel T, Venema RC, James NL, Bai CL, Mitch WE, Harrison DG. Interactions between L-arginine and L-glutamine change endothelial NO production. An effect independent of NO synthase substrate availability. J Clin Invest 1995;95:2565–2572.

    CAS  PubMed  Google Scholar 

  66. Wascher TC, Posch K, Wallner S, Hermetter A, Kostner GM, Graier WF. Vascular effects of L-arginine: Anything beyond a substrate for the NO-synthase? Biochem Biophys Res Commun 1997;234:35–38.

    Article  CAS  PubMed  Google Scholar 

  67. Pedrinelli R, Ebel M, Catapano G, Dell’Omo G, Ducci M, Del Chicca M, Clerico A. Pressor, renal and endocrine effects of L-arginine in essential hypertensives. Eur J Clin Pharmacol 1995;48:195–201.

    Article  CAS  PubMed  Google Scholar 

  68. Schmidt HH, Warner TD, Ishii K, Sheng H, Murad F. Insulin secretion from pancreatic B cells caused by L-arginine-derived nitrogen oxides. Science 1992;255:721–723.

    CAS  PubMed  Google Scholar 

  69. Giugliano D, Marfella R, Verrazzo G, Acampora R, Coppola L, Cozzolino D, D’Onofrio F. The vascular effects of L-Arginine in humans. The role of endogenous insulin. J Clin Invest 1997;99:433–438.

    CAS  PubMed  Google Scholar 

  70. Belch JJ, Bridges AB, Scott N, Chopra M. Oxygen free radicals and congestive heart failure. Br Heart J 1991;65:245–248.

    CAS  PubMed  Google Scholar 

  71. Sobotka PA, Brottman MD, Weitz Z, Birnbaum AJ, Skosey JL, Zarling EJ. Elevated breath pentane in heart failure reduced by free radical scavenger. Free Radic Biol Med 1993;14:643–647.

    Article  CAS  PubMed  Google Scholar 

  72. Singh N, Dhalla AK, Seneviratne C, Singal PK. Oxidative stress and heart failure. Mol Cell Biochem 1995;147:77–81.

    Article  CAS  PubMed  Google Scholar 

  73. McMurray J, Chopra M, Abdullah I, Smith WE, Dargie HJ. Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 1993;14:1493–1498.

    CAS  PubMed  Google Scholar 

  74. Keith M, Geranmayegan A, Sole MJ, Kurian R, Robinson A, Omran AS, Jeejeebhoy KN. Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 1998;31:1352–1356.

    Article  CAS  PubMed  Google Scholar 

  75. Hornig B, Arakawa N, Kohler C, Drexler H. Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 1998;97:363–368.

    CAS  PubMed  Google Scholar 

  76. Bauersachs J, Bouloumie A, Fraccarollo D, Hu K, Busse R, Ertl G. Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression; Role of enhanced vascular superoxide production. Circulation 1999;100:292–298.

    CAS  PubMed  Google Scholar 

  77. Cappola TP, Kass DA, Nelson GS, Berger RD, Rosas GO, Kobeissi ZA, Marban E, Hare JM. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 2001;104:2407–2411.

    CAS  PubMed  Google Scholar 

  78. Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt DV, Reaveley DA, Schuler G, Coats AJ, Anker SD, Hambrecht R. Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure; Results from 2 placebo-controlled studies. Circulation 2002;105:2619–2624.

    Article  CAS  PubMed  Google Scholar 

  79. Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K, Egashira K, Takeshita A. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 1999;85:357–363.

    CAS  PubMed  Google Scholar 

  80. Yucel D, Aydogdu S, Cehreli S, Saydam G, Canatan H, Senes M, Cigdem TB, Nebioglu S. Increased oxidative stress in dilated cardiomyopathic heart failure. Clin Chem 1998;44:148–154.

    CAS  PubMed  Google Scholar 

  81. Gokce N, Keaney JF, Jr., Frei B, Holbrook M, Olesiak M, Zachariah BJ, Leeuwenburgh C, Heinecke JW, Vita JA. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1999;99:3234–3240.

    CAS  PubMed  Google Scholar 

  82. Ito K, Akita H, Kanazawa K, Yamada S, Terashima M, Matsuda Y, Yokoyama M. Comparison of effects of ascorbic acid on endothelium-dependent vasodilation in patients with chronic congestive heart failure secondary to idiopathic dilated cardiomyopathy versus patients with effort angina pectoris secondary to coronary artery disease. Am J Cardiol 1998;82:762–767.

    Article  CAS  PubMed  Google Scholar 

  83. Ellis GR, Anderson RA, Lang D, Blackman DJ, Morris RH, Morris-Thurgood J, McDowell IF, Jackson SK, Lewis MJ, Frenneaux MP. Neutrophil superoxide anion—generating capacity, endothelial function and oxidative stress in chronic heart failure; Effects of s. J Am Coll Cardiol 2000;36:1474–1482.

    Article  CAS  PubMed  Google Scholar 

  84. Erbs S, Mobius-Winkler S, Gielen S, Schoene N, Linke A, Schulze PC, Hambrecht R. Correction of endothelial dysfunction by vitamin C; Different effects in ischemic heart disease and dilative cardiomyopathy. Circulation 2000;102:II–55.

    Google Scholar 

  85. Heller R, Munscher-Paulig F, Grabner R, Till U. L-Ascorbic acid potentiates nitric oxide synthesis in endothelial cells. J Biol Chem 1999;274:8254–8260.

    CAS  PubMed  Google Scholar 

  86. Mizutani A, Maki H, Torii Y, Hitomi K, Tsukagoshi N. Ascorbate-dependent enhancement of nitric oxide formation in activated macrophages. Nitric Oxide 1998;2:235–241.

    Article  CAS  PubMed  Google Scholar 

  87. Murphy ME, Piper HM, Watanabe H, Sies H. Nitric oxide production by cultured aortic endothelial cells in response to thiol depletion and replenishment. J Biol Chem 1991;266:19378–19383.

    CAS  PubMed  Google Scholar 

  88. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science 1992;258:1898–1902.

    CAS  PubMed  Google Scholar 

  89. Packer JE, Slater TF, Willson RL. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 1979;278:737–738.

    Article  CAS  PubMed  Google Scholar 

  90. Jarasch ED, Grund C, Bruder G, Heid HW, Keenan TW, Franke WW. Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell 1981;25:67–82.

    CAS  PubMed  Google Scholar 

  91. Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T, Pai EF. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. Proc Natl Acad Sci USA 2000;97:10723–10728.

    Article  CAS  PubMed  Google Scholar 

  92. Bakhtiiarov ZA. [Changes in xanthine oxidase activity in patients with circulatory failure]. Ter Arkh 1989;61:68–69.

    CAS  PubMed  Google Scholar 

  93. Doehner W, Rauchhaus M, Florea VG, Sharma R, Bolger AP, Davos CH, Coats AJ, Anker SD. Uric acid in cachectic and noncachectic patients with chronic heart failure: Relationship to leg vascular resistance. Am Heart J 2001;141:792–799.

    Article  CAS  PubMed  Google Scholar 

  94. Saavedra WF, Paolocci N, St John ME, Skaf MW, Stewart GC, Xie JS, Harrison RW, Zeichner J, Mudrick D, Marban E, Kass DA, Hare JM. Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ Res 2002;90:297–304.

    Article  CAS  PubMed  Google Scholar 

  95. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341:709–717.

    CAS  PubMed  Google Scholar 

  96. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: Insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 2000;102:2700–2706.

    CAS  PubMed  Google Scholar 

  97. Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 2000;101:594–597.

    CAS  PubMed  Google Scholar 

  98. Bauersachs J, Heck M, Fraccarollo D, Hildemann SK, Ertl G, Wehling M, Christ M. Addition of spironolactone to angiotensin-converting enzyme inhibition in heart failure improves endothelial vasomotor dysfunction: Role of vascular superoxide anion formation and endothelial nitric oxide synthase expression. J Am Coll Cardiol 2002;39:351–358.

    Article  CAS  PubMed  Google Scholar 

  99. Hornig B, Maier V, Drexler H. Physical training improves endothelial function in patients with chronic heart failure. Circulation 1996;93:210–214.

    CAS  PubMed  Google Scholar 

  100. Katz SD, Yuen J, Bijou R, LeJemtel TH. Training improves endothelium-dependent vasodilation in resistance vessels of patients with heart failure. J Appl Physiol 1997;82:1488–1492.

    CAS  PubMed  Google Scholar 

  101. Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Yu J, Kratzsch JJ, Baldauf G, Busse MW, Schubert A, Adams V, Schuler G. Reduction of insulin-like growth factor-I expression in the skeletal muscle of noncachectic patients with chronic heart failure. J Am Coll Cardiol 2002;39:1175–1181.

    CAS  PubMed  Google Scholar 

  102. Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L, Adams V, Riede U, Schuler G. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol 1997;29:1067–1073.

    CAS  PubMed  Google Scholar 

  103. Linke A, Schoene N, Gielen S, Hofer J, Erbs S, Schuler G, Hambrecht R. Endothelial dysfunction in patients with chronic heart failure: Systemic effects of lower-limb exercise training. J Am Coll Cardiol 2001;37:392–397.

    Article  CAS  PubMed  Google Scholar 

  104. Hambrecht R, Gielen S, Linke A, Fiehn E, Yu J, Walther C, Schoene N, Schuler G. Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: A randomized trial. JAMA 2000;283:3095–3101.

    Article  CAS  PubMed  Google Scholar 

  105. Piepoli M, Clark AL, Volterrani M, Adamopoulos S, Sleight P, Coats AJ. Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: Effects of physical training. Circulation 1996;93:940–952.

    CAS  PubMed  Google Scholar 

  106. Kiilavuori K, Toivonen L, Naveri H, Leinonen H. Reversal of autonomic derangements by physical training in chronic heart failure assessed by heart rate variability. Eur Heart J 1995;16:490–495.

    CAS  PubMed  Google Scholar 

  107. Coats AJ, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L, Solda PL, Davey P, Ormerod O, Forfar C. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 1992;85:2119–2131.

    CAS  PubMed  Google Scholar 

  108. Belardinelli R, Georgiou D, Cianci G, Purcaro A. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: Effects on functional capacity, quality of life, and clinical outcome. Circulation 1999;99:1173–1182.

    CAS  PubMed  Google Scholar 

  109. Ranjan V, Xiao Z, Diamond SL. Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am J Physiol 1995;269:H550–H555.

    CAS  PubMed  Google Scholar 

  110. Noris M, Morigi M, Donadelli R, Aiello S, Foppolo M, Todeschini M, Orisio S, Remuzzi G, Remuzzi A. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res 1995;76:536–543.

    CAS  PubMed  Google Scholar 

  111. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 1994;74:349–353.

    CAS  PubMed  Google Scholar 

  112. Wang J, Wolin MS, Hintze TH. Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 1993;73:829–838.

    CAS  PubMed  Google Scholar 

  113. Woodman CR, Muller JM, Laughlin MH, Price EM. Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs. Am J Physiol 1997;273:H2575–H2579.

    CAS  PubMed  Google Scholar 

  114. Laughlin MH, Pollock JS, Amann JF, Hollis ML, Woodman CR, Price EM. Training induces nonuniform increases in eNOS content along the coronary arterial tree. J Appl Physiol 2001;90:501–510.

    CAS  PubMed  Google Scholar 

  115. Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J, Jo H. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: Role of protein kinase A. J Biol Chem 2002;277:3388–3396.

    Article  CAS  PubMed  Google Scholar 

  116. Rizzo V, McIntosh DP, Oh P, Schnitzer JE. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 1998;273:34724–34729.

    CAS  PubMed  Google Scholar 

  117. Poach K, Schmidt K, Graier WF. Selective stimulation of L-arginine uptake contributes to shear stress-induced formation of nitric oxide. Life Sci 1999;64:663–670.

    Google Scholar 

  118. Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest 2000;105:1631–1639.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Linke, A., Recchia, F., Zhang, X., Hintze, T.H. (2004). Acute and Chronic Endothelial Dysfunction: Implications for the Development of Heart Failure. In: Jugdutt, B.I. (eds) The Role of Nitric Oxide in Heart Failure. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7960-5_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7960-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7736-4

  • Online ISBN: 978-1-4020-7960-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics