Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  • Acharya, A., Maanjula, B., Murthy, G., & Vithayathil, P. (1977). Int J Peptide Protein Res, 9, 213–219.

    Google Scholar 

  • Aleksandrov, M., Gall, L., Krasnov, V., Nikolae, V., Pavlenko, V., Shkurov, V., et al. (1984). Bioorg. Khim., 10, 710.

    Google Scholar 

  • Amado, F., Damingues, P., Santana-Marques, M., Ferrer-Correia, A., & Jones, K. (1997). Discrimination effects and sensitivity variations in MALDI. Rapid Commun. Mass Spectrom., 11, 1347–1352.

    Article  Google Scholar 

  • Anderson, L., & Seilhamer, J. (1997). A comparison of selected mRNA and protein abundances in human liver. Electrophoresis, 18(3–4), 533–537.

    Article  PubMed  Google Scholar 

  • Anderson, N. L., Giometti, C. S., Gemmell, M. A., Nance, S. L., & Anderson, N. G. (1982). A two-dimensional electrophoretic analysis of the heat-shock-induced proteins of human cells. Clin Chem, 28(4 Pt 2), 1084–1092.

    Google Scholar 

  • Appel, R., Hochstrasser, D., Funk, M., Vargas, R., Pellegrini, C., Muller, A., et al. (1991). Electrophoresis, 12, 722–735.

    Article  PubMed  Google Scholar 

  • Appel, R., Palagi, P., Walther, D., Vargas, J., Sanchez, J., Ravier, F., et al. (1997). Melanie II—a third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface. Electrophoresis, 18(15), 2724–2734.

    Article  PubMed  Google Scholar 

  • Appel, R., Vargas, J., Palagi, P., Walther, D., & Hochstrasser, D. (1997). Melanie II—a third-generation software package for analysis of two-dimensional electrophoresis images: II. Algorithms. Electrophoresis, 18(15), 2735–2748.

    Article  PubMed  Google Scholar 

  • Ashman, K., Houthaeve, T., Clayton, J., Wilm, M., Podtelejnikov, A., & Jensen, O. (1997). Lett. Pept. Sci., 4, 57–65.

    Article  Google Scholar 

  • Avery, G., McGee, C., & Falk, S. (2000). Implementing LIMS: a “how-to” guide. Anal Chem, 72(1), 57A–62A.

    PubMed  Google Scholar 

  • Ayorinde, F. O., Hambright, P., Porter, T. N., & Keith, Q. L., Jr. (1999). Use of meso-tetrakis(pentafluorophenyl)porphyrin as a matrix for low molecular weight alkylphenol ethoxylates in laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom, 13(24), 2474–2479.

    Article  PubMed  Google Scholar 

  • Bairoch, A., & Apweiler, R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic acids research, 28, 45–48.

    Article  PubMed  Google Scholar 

  • Bartlet-Jones, M., Jeffrey, W., Hansen, H., & Pappin, D. (1994). Peptide ladder sequencing by MS using a novel volatile degradation reagent. Rapid Commun. Mass Spectrom., 8, 737–742.

    Article  PubMed  Google Scholar 

  • Bauer, M., Sun, Y., Keough, T., & Lacey, M. (2000). Sequencing of sulfonic acid derivatized peptides by electrospray MS. Rapid Commun. Mass Spectrom., 14, 924–929.

    Article  PubMed  Google Scholar 

  • Beavis, J., & Bridson, J. (1993). Epitaxial protein inclusion in sinaptic acid cristal. J. Phys. D.: Appl. Phys., 26, 442–447.

    Article  Google Scholar 

  • Bienvenut, W., Deon, C., Sanchez, J., & Hochstrasser, D. (2002). Enhanced protein recovery after electrotransfer using square wave alternating voltage. Anal Biochem, 307(2), 297–303.

    Article  PubMed  Google Scholar 

  • Bienvenut, W., Hoogland, C., Greco, A., Heller, M., Gasteiger, E., Appel, R., et al. (2002). Hydrogen/deuterium exchange for higher specificity of protein identification by peptide mass fingerprinting. Rapid Commun. Mass Spectrom., 16(6), 616–626.

    Article  PubMed  Google Scholar 

  • Bienvenut, W., Sanchez, J., Karmime, A., Rouge, V., Rose, K., Binz, P., et al. (1999). Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot. Anal Chem, 71(21), 4800–4807.

    Article  PubMed  Google Scholar 

  • Binz, P., Muller, M., Walther, D., Bienvenut, W., Gras, R., Hoogland, C., et al. (1999). A molecular scanner to automate proteomic research and to display proteome images. Anal Chem, 71(21), 4981–4988.

    Article  PubMed  Google Scholar 

  • Binz, P., Wilkins, M., Gasteiger, E., Bairoch, A., Appel, R., & Hochstrasser, D. (1999). In R. Kellner, F. Lottspeich & H. Meyer (Eds.), Microcharacterisation of proteins (2nd ed., pp. 277–300). Berlin: Wiley-VCH.

    Google Scholar 

  • Binz, P. A., Muller, M., Walther, D., Bienvenut, W. V., Gras, R., Hoogland, C., et al. (1999). A molecular scanner to automate proteomic research and to display proteome images. Anal Chem, 71(21), 4981–4988.

    Article  PubMed  Google Scholar 

  • Bjellqvist, B., Ek, P., Righetti, P., Gianazza, E., Gorg, A., Westermeir, R., et al. (1982). J. Biochem. Biophys., 6, 317–339.

    Article  Google Scholar 

  • Blankenship, D. T., Krivanek, M. A., Ackermann, B. L., & Cardin, A. D. (1989). High-sensitivity amino acid analysis by derivatization with O-phthalaldehyde and 9-fluorenylmethyl chloroformate using fluorescence detection: applications in protein structure determination. Anal Biochem, 178(2), 227–232.

    Article  PubMed  Google Scholar 

  • Bolt, M., & Mahoney, P. (1997). High-efficiency blotting of proteins of divers sizes following SDS-PAGE. Anal. Biochem., 247, 185–192.

    Article  PubMed  Google Scholar 

  • Breaux, G., Green-Church, K., France, A., & Limbach, P. (2000). surfractant-aided, MALDI-MS of hydrophobic and hydrophylic peptides. Anal. Chem., 72, 1169–1174.

    Article  PubMed  Google Scholar 

  • Breen, E., Hopwood, F., Williams, K., & Wilkins, M. (2000). Automatic Poisson peak harvesting for high throughput protein identification. Electrophoresis, 21, 2243–2251.

    Article  PubMed  Google Scholar 

  • Brown, R., & Lennon, J. (1995). Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionisation linear time-of-flight mass spectrometer. Anal. Chem, 67, 1988–2003.

    Google Scholar 

  • Buijs, J., Costa Vera, C., Ayala, E., Steensma, E., Hakansson, P., & Oscarsson, S. (1999). Conformational stability of adsorbed insulin studied with mass spectrometry and hydrogen exchange. Anal Chem, 71(15), 3219–3225.

    Article  PubMed  Google Scholar 

  • Cavalcoli, J. D., VanBogelen, R. A., Andrews, P. C., & Moldover, B. (1997). Unique identification of proteins from small genome organisms: theoretical feasibility of high throughput proteome analysis. Electrophoresis, 18(15), 2703–2708.

    Article  PubMed  Google Scholar 

  • Chaurand, P., Luetzenkirchen, F., & Spengler, B. (1999). Peptide and protein identification by MALDI-PSD TOF-MS. J. Am. Soc. Mass Spectrom., 10, 91–103.

    Article  PubMed  Google Scholar 

  • Chen, C., Walkes, A., Wu, Y., Timmons, R., & Kinsel, G. (1999). Influence of sample preparation methodology on the reduction of peptide MALDI-ion signal by surface peptide binding. J Mass Spectrom, 34, 1205–1207.

    Article  PubMed  Google Scholar 

  • Clauser, K., Hall, S., Smith, D., Webb, J., Andrews, L., Tran, H., et al. (1995). Rapid mass spectrometric peptide sequencing and mass matching for characterization of human melanoma proteins isolated by two-dimensional PAGE. Proc. Natl. Acad. Sci. USA, 92(11), 5072–5076.

    PubMed  Google Scholar 

  • Cohen, S., & Chait, B. (1996). Influence of matrix solution condition on the MALDI-MS analysis of peptides and proteins. Anal. Chem, 68, 31–37.

    Article  PubMed  Google Scholar 

  • Cohen, S. L., & Chait, B. T. (1996). Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem, 68(1), 31–37.

    Article  PubMed  Google Scholar 

  • Cooper, C. A., Wilkins, M. R., Williams, K. L., & Packer, N. H. (1999). BOLD—a biological O-linked glycan database. Electrophoresis, 20(18), 3589–3598.

    Article  PubMed  Google Scholar 

  • Cornish, T., & Cotter, R. (1993). A curved-field reflectron for improved énergie focussing of product ions in time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 7, 1037–1040.

    Article  PubMed  Google Scholar 

  • Dancik, V., Addona, T., Clauser, K., Vath, J., & Pevzner, P. (1999). De novo peptide sequencing via tandem mass spectrometry. J. Comput. Biol., 6, 327–342.

    Article  PubMed  Google Scholar 

  • Dottavio-Martin, D., & Ravel, J. M. (1978). Radiolabeling of proteins by reductive alkylation with [14C]formaldehyde and sodium cyanoborohydride. Anal Biochem, 87(2), 562–565.

    Article  PubMed  Google Scholar 

  • Ducret, A., Bartone, N., Haynes, P., Blanchard, A., & Aebersold, R. (1998). A simplified gradient solvent delivery system for capillary liquid chromatography — electrospray ionization mass spectrometry. submitted.

    Google Scholar 

  • Edman, P., & Begg, G. (1967). Eur. J. Biochem., 1, 80–91.

    Article  PubMed  Google Scholar 

  • Einarsson, S., Josefsson, B., & Lagerkvist, S. (1983). J. Chromatogr., 282, 609.

    Article  Google Scholar 

  • Emmett, M., & Caprioli, R. (1994). Micro-electrospray mass spectrometry: Ultra-high-sensitivity analysis of peptides and proteins. J. Am. Soc. Mass. Spectrom., 5, 605–613.

    Article  Google Scholar 

  • Eng, J., McCormack, A., & Yates, J. r. (1994). An approach to correlate tandem mass spectral data pf peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom., 5(11), 976–989.

    Article  Google Scholar 

  • Eriksson, J., Chait, B., & Fenyo, D. (2000). A statistical basis for testing the significance of mass spectrometric protein identification results. Anal Chem, 72(5), 999–1005.

    Article  PubMed  Google Scholar 

  • Falick, A., & Maltby, D. (1989). Anal. Biochem., 182, 165–169.

    Article  PubMed  Google Scholar 

  • Fenyo, D., Qin, J., & Chait, B. (1998). Protein identification using mass spectrometric information. Electrophoresis, 19(6), 998–1005.

    Article  PubMed  Google Scholar 

  • Femandez-de-Cossio, J., Gonzalez, J., & Besada, V. (1995). A computer program to aid the sequencing of peptides in collision-activated decomposition experiments. Comput Appl Biosci, 11(4), 427–434.

    PubMed  Google Scholar 

  • Femandez-de-Cossio, J., Gonzalez, J., Betancourt, L., Besada, V., Padron, G., Shimonishi, Y., et al. (1998). Automated interpretation of high-energy collision-induced dissociation spectra of singly protonated peptides by ‘seqMS’, a software aid for de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom, 12(23), 1867–1878.

    Article  PubMed  Google Scholar 

  • Fernandez-Patron, C., Castellanos-Serra, L., & Rodriguez, P. (1992). Reverse staining of sodium dodecyl sulfate polyacrylamide gels by imidazole-zinc salts: sensitive detection of unmodified proteins. Biotechniques, 12(4), 564–573.

    PubMed  Google Scholar 

  • Figueroa, I., Torres, O., & Russell, D. (1998). Effects of the water content in the sample preparation for MALDI on the mass spectra. Anal. Chem., 70, 4527–4533.

    Article  PubMed  Google Scholar 

  • Fraenkel-Conrat, H., & Olcott, H. (1945). J. Biol. Chem., 161, 259–268.

    Google Scholar 

  • Gates, P. J., Kearney, G. C., Jones, R., Leadlay, P. F., & Staunton, J. (1999). Structural elucidation studies of erythromycins by electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom, 13(4), 242–246.

    Article  PubMed  Google Scholar 

  • Gay, S., Binz, P. A., Hochstrasser, D. F., & Appel, R. D. (1999). Modeling peptide mass fingerprinting data using the atomic composition of peptides. Electrophoresis, 20(18), 3527–3534.

    Article  PubMed  Google Scholar 

  • Gevaert, K., De Mol, H., Verschelde, J. L., Van Damme, J., De Boeck, S., & Vandekerckhove, J. (1997). Novel techniques for identification and characterization of proteins loaded on gels in femtomole amounts. J Protein Chem, 16(5), 335–342.

    Article  PubMed  Google Scholar 

  • Gevaert, K., Demol, H., Sklyarova, T., Houthaeye, T., De Broeck, S., & Vandekerckove, J. (1998). Sample preparation procedures for ultra sensitive protein identification by PSD-MALDI-TOF-MS. J. Prot. Chem., 17(6), 560.

    Google Scholar 

  • Gevaert, K., Demol, H., Sklyarova, T., Vandekerckhove, J., & Houthaeve, T. (1998). A peptide concentration and purification method for protein characterization in the subpicomole range using matrix assisted laser desorption/ionization postsource decay (MALDI-PSD) sequencing. Electrophoresis, 19(6), 909–917.

    Article  PubMed  Google Scholar 

  • Gevaert, K., Houthaeve, T., & Vandekerckhove, J. (2000). Techniques for sample preparation including methods for concentrating peptide samples. Exs, 88, 29–42.

    PubMed  Google Scholar 

  • Gevaert, K., & Vandekerckhove, J. (2000). Protein identification methods in proteomics. Electrophoresis, 21(6), 1145–1154.

    Article  PubMed  Google Scholar 

  • Gobom, J., Kraeuter, K., Persson, R., Steen, H., Roepstorff, P., & Ekman, R. (2000). Detection and quantification of neurotensin in human brain tissue by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Anal. Chem., 72, 3320–3326.

    Article  PubMed  Google Scholar 

  • Golaz, O., Wilkins, M. R., Sanchez, J. C., Appel, R. D., Hochstrasser, D. F., & Williams, K. L. (1996). Identification of proteins by their amino acid composition: an evaluation of the method. Electrophoresis, 17(3), 573–579.

    Article  PubMed  Google Scholar 

  • Gooley, A., Ou, K., Russell, J., Wilkins, M., Sanchez, J., Hochstrasser, D., et al. (1997). Electrophoresis, 18, 1068.

    Article  PubMed  Google Scholar 

  • Gorg, A., Postel, W., & Gunther, S. (1988). The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 9(9), 531–546.

    Article  PubMed  Google Scholar 

  • Gras, R., Muller, M., Gasteiger, E., Gay, S., Binz, P., Bienvenut, W., et al. (1999). Improving protein identification from peptide mass fingerprinting through a parameterized multi-level scoring algorithm and an optimized peak detection. Electrophoresis, 20(18), 3535–3550.

    Article  PubMed  Google Scholar 

  • Guilhaus, M., Selby, D., & Mlynski, V. (2000). Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev, 19(2), 65–107.

    Article  PubMed  Google Scholar 

  • Gusev, A., Wilkinson, W., Proctor, A., & Hercules, D. (1995). Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Anal. Chem, 67, 1034–1041.

    Article  Google Scholar 

  • Gygi, S., Rist, B., Gerber, S., Turecek, F., Gelb, M., & Aebersold, R. (1999). quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnol., 17, 994–999.

    Article  Google Scholar 

  • Haynes, P., Sheumack, D., Greig, L., Kibby, J., & Redmond, J. (1991). J. Chromatogr., 588, 107–114.

    Article  PubMed  Google Scholar 

  • Hensel, R. R., King, R. C., & Owens, K. G. (1997). Electrospay sample preparation for improved quantitation in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 11, 1785–1793.

    Article  PubMed  Google Scholar 

  • Henzel, W. J., Billeci, T. M., Stults, J. T., Wong, S. C., Grimley, C., & Watanabe, C. (1993). Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proceedings of the National Academy of Sciences of the United States of America, 90(11), 5011–5015.

    PubMed  Google Scholar 

  • Hochstrasser, D. (1998). Proteome in perspective. Clin. Chem. Lab. Med., 36(11), 825–836.

    Article  PubMed  Google Scholar 

  • Hochstrasser, D. F., Appel, R. D., Vargas, R., Perrier, R., Vurlod, J. F., Ravier, F., et al. (1991). A clinical molecular scanner: the Melanie project. MD Comput, 8(2), 85–91.

    PubMed  Google Scholar 

  • Hofmann, K., Bucher, P., Falquet, L., & Bairoch, A. (1999). The PROSITE database, its status in 1999. Nucleic Acids Res, 27(1), 215–219.

    Article  PubMed  Google Scholar 

  • Houthaeve, T., Gausepohl, H., Ashman, K., Nillson, T., & Mann, M. (1997). Automated protein preparation techniques using a digest robot. J. Prot. Chem., 16(5), 343–348.

    Article  Google Scholar 

  • Houthaeve, T., Gausepohl, H., Mann, M., & Ashman, K. (1995). Automation of micro-preparation and enzymatic cleavage of gel electrophoretically separated proteins. FEBS Lett., 376(1–2), 91–94.

    Article  PubMed  Google Scholar 

  • Hunt, D., Yates, J., Shabanowitz, J., Winston, S., & Hauer, C. (1986). Proc. Natl. Sci. USA, 83, 6233–6237.

    Google Scholar 

  • Ingendoh, A., Karas, M., Hillenkamp, F., & Giessmann, U. (1994). Factors affecting the resolution in MALDI-MS. Int. J. Mass Spectrom. Ion Proc., 131, 345–354.

    Article  Google Scholar 

  • James, P., Quadroni, M., Carafoli, E., & Gonnet, G. (1993). Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun, 195(1), 58–64.

    Article  PubMed  Google Scholar 

  • Jensen, O. N., Podtelejnikov, A., & Mann-M. (1996). Delayed extraction improves specificity in database searches by matrix-assisted laser desorption/ionization peptide maps. Rapid Commun. Mass Spectrom., 10(11), 1371–1378.

    Article  PubMed  Google Scholar 

  • Johnson, R. S., Martin, S. A., Biemann, K., Stults, J. T., & Watson, J. T. (1987). Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: differentiation of leucine and isoleucine. Anal Chem, 59(21), 2621–2625.

    Article  PubMed  Google Scholar 

  • Johnston, R. F., Pickett, S. C., & Barker, D. L. (1990). Autoradiography using storage phosphor technology. Electrophoresis, 11(5), 355–360.

    Article  PubMed  Google Scholar 

  • Jones, D., Stott, K., Howard, M., & Perham, R. (2000). Biochemistry, 39, 8448–8459.

    Article  PubMed  Google Scholar 

  • Jonhnson, R., & Biemann, K. (1989). Computer program (seqpep) to aid in the interpretation of high-energy collision tandem mass spectra of peptides. Biomed. Mass Spectrom., 18, 945-.

    Article  Google Scholar 

  • Joubert-Caron, R., Le Caer, J., Montandon, F., Poirier, F., Pontet, M., Imam, N., et al. (2000). Protein analysis by mass spectrometry and sequence database searching: a proteomic approach to identify human lymphoblastoid cell line proteins. Electrophoresis, 21(12), 2566–2575.

    Article  PubMed  Google Scholar 

  • Jungblut, P., Eckerskorn, C., Lottspeich, F., & Klose, J. (1990). Blotting efficiency investigated by using two-dimensional electrophoresis, hydrophobic membranes and proteins from different sources. Electrophoresis, 11(7), 581–588.

    Article  PubMed  Google Scholar 

  • Karas, M., Bachmann, D., Bahr, U., & Hillenkamp, F. (1987). Int. J. Mass Spectrom. Ion Processes, 78, 53–68.

    Article  Google Scholar 

  • Karas, M., Bahr, U., Strupat, K., Hillenkamp, F., Tsarbopoulos, A., & Pramanik, B. N. (1995). Matrix dependence of metastable fragmentation of glycoproteins in MALDI TOF mass spectrometry. Anal. Chem., 67, 675–679.

    Article  Google Scholar 

  • Karas, M., Glückmann, M., & Schäfer, J. (2000). Ionization in matrix-assisted laser desorption/ionisation: singly charged molecular ions are the lucky survivors. J. Mass Spectrom., 35,.01–12.

    Article  Google Scholar 

  • Karas, M., & Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 60(20), 2299–2301.

    Article  PubMed  Google Scholar 

  • Katta, V., & Chait, B. (1993). J. Am. Chem. Soc., 115, 6317–6321.

    Article  Google Scholar 

  • Kaufinann, R., Kirsch, D., & Spengler, B. (1994). Sequencing of peptides in a time-of-flight mass spectrometer: evaluation of postsource decay following matrix-assisted laser desorption/ionisation (MALDI). Int. J. Mass Spectrom. Ion Proc., 131, 355–385.

    Article  Google Scholar 

  • Kaufinann, R., Spengler, B., & Lutzenkirchen, F. (1993). Mass spectrometric sequencing of linear peptides by product-ion anaylsis in a reflectron time-of-flight mass spectrometer using matric-assisted laser desorption/ionisation. Rapid Commun. Mass Spectrom., 7, 902–910.

    Article  PubMed  Google Scholar 

  • Kebarle, P. (2000). A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J Mass Spectrom, 35(7), 804–817.

    Article  PubMed  Google Scholar 

  • Keil, B. (1982). In Methods in protein sequence analysis. Clifton: Humana Press.

    Google Scholar 

  • Keil, B. (1992). Specificity of proteolysis. Heidelberg/New York: Springer-Verlag.

    Google Scholar 

  • Keller, B., & Li, L. (2000). J Am Chem Soc, 11, 88–93.

    Google Scholar 

  • Kenrik, K., & Margolis, J. (1970). Anal. Biochem., 33, 204–207.

    Article  PubMed  Google Scholar 

  • Keough, T., Lacey, M. P., & Youngquist, R. S. (2000). Derivatization procedures to facilitate de novo sequencing of lysine-terminated tryptic peptides using postsource decay matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom, 14(24), 2348–2356.

    Article  PubMed  Google Scholar 

  • Keough, T., Youngquist, R. S., & Lacey, M. P. (1999). A method for high sensitivity peptide sequencing using post source decay MALDI-MS. Proc. Natl. Sci. USA, 96, 7131–7136.

    Article  Google Scholar 

  • Klose, J. (1975). Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik, 26(3), 231–243.

    PubMed  Google Scholar 

  • Kollisch, G., Lorenz, M., Kellner, R., Verhaert, P., & Hoffmnann, K. (2000). Eur J Biochem, 267, 5502–5508.

    Article  PubMed  Google Scholar 

  • Kratzer, R., Eckerskorn, C., Karas, M., & Lottspeich, F. (1998). Suppression effects in enzymatic peptide ladder sequencing using UV-MALDI-MS. Electrophoresis, 19, 1910–1919.

    Article  PubMed  Google Scholar 

  • Kraus, M., Janck, K., Bienert, M., & Krause, E. (2000). Characterisation of intermolecular ?-sheet peptides by mass spectrometry and hydrogen isotope exchange. Rapid Commun. Mass Spectrom., 14, 1094–1104.

    Article  PubMed  Google Scholar 

  • Krause, E., Wenschuh, H., & Jungblut, P. R. (1999). The dominance of Arg containing peptidesin MALDI derived tryptic mass fingerprints of proteins. Anal. Chem., 71, 4160–4165.

    Article  PubMed  Google Scholar 

  • Krutchinsky, A., W, Z., & BT., C. (2000). Rapidly switchable MALDI and electrospray quadrupole time of flight for protein identification. J. Am. Soc. Mass Spectrom., 11, 493–504.

    Article  PubMed  Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(259), 680–685.

    PubMed  Google Scholar 

  • Lahn, H. W., & Langen, H. (2000). Mass spectrometry: a tool for the identifiaction of proteins separated by gels. Electrophoresis, 21, 2105–2114.

    Article  PubMed  Google Scholar 

  • Lehr, S., Kotzka, J., Herkner, A., Sikmann, A., Meyer, H., Krone, W., et al. (2000). Biochemistry, 39, 10898–10907.

    Article  PubMed  Google Scholar 

  • Li, G., Waltham, M., Anderson, N. L., Unsworth, E., Treston, A., & Weinstein, J. N. (1997). Rapid mass spectrometric identification of proteins from two-dimensional polyacrylamide gels after in gel proteolytic digestion. Electrophoresis, 18(3–4), 391–402.

    Article  PubMed  Google Scholar 

  • Liao, P., Huang, Z., & Allison, J. (1997). Charge remote fragmentation of peptides following attachment of a fixed positive charge: a MALDI PSD study. J. Am. Soc. Mass Spectrom., 8, 501–509.

    Article  Google Scholar 

  • Link, A., Tempel, K., & Hund, M. (1992). RNA metabolism, DNA damage and cellular resistance to X-rays: investigations in chick embryo and rat cells. ZNaturforsch [C], 47(3–4), 249–254.

    Google Scholar 

  • Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., et al. (1999). Direct analysis of protein complexes using mass spectrometry. Nature Biotechnol., 17, 676–682.

    Article  Google Scholar 

  • Lopez, M. F. (2000). Better approach to finding the needle in a haystack: optimizing proteome analysis through automation. Electrophoresis, 21, 1082–1093.

    Article  PubMed  Google Scholar 

  • Mamyrin, B., Karatajev, V., Shmikk, D., & Zagulin, V. (1973). JEPT, 37, 45-.

    Google Scholar 

  • Mann, M., Hojrup, P., & Roepstorff, P. (1993). Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom, 22, 338–345.

    Article  PubMed  Google Scholar 

  • Mann, M., & Wilm, M. (1994). Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem, 66, 4390–4399.

    Article  PubMed  Google Scholar 

  • McCormack, A. L., Schieltz, D. M., Goode, B., Yang, S., Barnes, G., Drubin, D., et al. (1997). Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Analytical Chemistry, 69(4), 767–776.

    Article  PubMed  Google Scholar 

  • Medzihradszky, K. F., Campbell, J. M., Baldwin, M. A., Falick, A. M., Juhasz, P., Vestal, M. L., et al. (2000). The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem, 72(3), 552–558.

    Article  PubMed  Google Scholar 

  • Mozdzanowski, J., & Speicher, D. (1992). Microsequence analysis of electroblotted proteins. I. Comparison of electroblotting recoveries using different types of PVDF membranes. Anal Biochem, 207(1), 11–18.

    Article  PubMed  Google Scholar 

  • Muller, M., Gras, R., Appel, R. D., Bienvenut, W. V., & Hochstrasser, D. F. (2002). Visualization and analysis of molecular scanner peptide mass spectra. J Am Soc Mass Spectrom, 13(3), 221–231.

    Article  PubMed  Google Scholar 

  • Nakanishi, T., Okamoto, N., Tanaka, K., & Shimizu, A. (1994). Biol Mass Spectrom, 23, 230–233.

    Article  PubMed  Google Scholar 

  • Neuhoff, V., Arold, N., Taube, D., & Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 9(6), 255–262.

    Article  PubMed  Google Scholar 

  • Neumann, H., & Mullner, S. (1998). Two replica blotting methods for fast immunological analysis of common proteins in two-dimentional electrophoresis. Electrophoresis, 19, 752–757.

    Article  PubMed  Google Scholar 

  • Nutkins, J., & Williams, D. (1989). Eur. J. Biochem.

    Google Scholar 

  • Oda, Y., Huang, K., Cross, F. R., Cowburn, D., & Chait, B. T. (1999). Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA, 96(12), 6591–6596.

    Article  PubMed  Google Scholar 

  • O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 250(10), 4007–4021.

    PubMed  Google Scholar 

  • Okamoto, M., Takahashi, K., Doi, T., & Takimoto, Y. (1997). High-sensitivity detection and postsource decay of 2-aminopyridine-derivatized oligosaccharides with matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem, 69(15), 2919–2926.

    Article  PubMed  Google Scholar 

  • Pappin, D., Hojrup, P., & Bleasby, A. (1993). Rapid identification of proteins by petide mass fingerprint. Curr. Biol., 3(6), 327–332.

    Article  PubMed  Google Scholar 

  • Patterson, S., Thomas, D., & Bradshaw, R. (1996). Application of combined mass spectrometry and partial amino acid sequence to the identification of gel separated proteins. Electrophoresis, 17, 877–891.

    Article  PubMed  Google Scholar 

  • Patton, W. F. (2000). A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis, 21(6), 1123–1144.

    Article  PubMed  Google Scholar 

  • Perkins, D., Pappin, D., Creasy, D., & Cottrell, J. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18), 3551–3567.

    Article  PubMed  Google Scholar 

  • Rabilloud, T. (1990). Electrophoresis, 11.

    Google Scholar 

  • Ramsay, S. L., Steinborner, S. T., Waugh, R. J., Dua, S., & Bowie, J. H. (1995). A simple method for differentiating Leu and Ile in peptides. The negative-ion mass spectra of [M-H]-ions of phenylthiohydantoin Leu and Ile. Rapid Commun Mass Spectrom, 9(13), 1241–1243.

    Article  PubMed  Google Scholar 

  • Reim, D., & Speicher, D. (1992). Microsequence analysis of electroblotted proteins: part II. Anal. Biochem., 207, 19–23.

    Article  PubMed  Google Scholar 

  • Roepstorff, P., & Fohlman, J. (1984). Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed. Mass Spectrom., 11, 601.

    Article  PubMed  Google Scholar 

  • Rossier, J. S., Schwarz, A., Reymond, F., Ferrigno, R., Bianchi, F., & Girault, H. H. (1999). Microchannel networks for electrophoretic separations. Electrophoresis, 20(4–5), 727–731.

    Article  PubMed  Google Scholar 

  • Sakurai, T., Matsuo, T., Matsuda, H., & I, K. (1984). Paas3: A computer program to decide probable sequences of peptides from mass spectrometric data. Biomed. Mass Spectrom., 11(8), 396–402.

    Article  Google Scholar 

  • Salih, B., & Zenobi, R. (1998). MALDI mass spectrometry of dye-peptide and dye protein complexe. Anal. Chem., 70, 1536–1543.

    Article  PubMed  Google Scholar 

  • Scarberry, R., Zhang, Z., & Knapp, D. (1995). J. Am. Soc. Mass Spectrom., 6, 947-.

    Article  Google Scholar 

  • Scheele, G. (1975). J. Biol. Chem., 250, 5375–5385.

    PubMed  Google Scholar 

  • Schwert, G., & Takenaka, Y. (1955). A Spectrophotometric Determination of Trypsin and Chymotrypsin. Biochim Biophys Acta, 16, 570.

    Article  PubMed  Google Scholar 

  • Shevchenko, A., Loboda, A., Ens, W., & Standing, K. G. (2000). MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research. Anal Chem, 72(9), 2132–2141.

    Article  PubMed  Google Scholar 

  • Smith, R., Loo, J., Edmonds, C., Barinaga, C., & Udseth, H. (1990). Anal. Chem., 62, 882–899.

    Article  PubMed  Google Scholar 

  • Spengler, B. (1997). Post-source decay analysis in matrix*assisted laser desorption/ionisation mass spectrometry of biomolecules. J. Mass Spectrom., 32, 1019–1036.

    Article  Google Scholar 

  • Spengler, B., Lutzenkirchen, F., & Kaufinann, R. (1993). On-target deuteration for peptide sequencing by laser mass spectrometry. Org. Mass Spectrom., 28, 1482–1490.

    Article  Google Scholar 

  • Stemmler, E. A., Buchanan, M. V., Hurst, G. B., & Hettich, R. L. (1995). Analysis of modified oligonucleotides by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. Anal Chem, 67(17), 2924–2930.

    Article  PubMed  Google Scholar 

  • Stemmler, E. A., Hettich, R. L., Hurst, G. B., & Buchanan, M. V. (1993). Matrix-assisted laser desorption/ionization Fourier-transform mass spectrometry of oligodeoxyribonucleotides. Rapid Commun Mass Spectrom, 7(9), 828–836.

    Article  PubMed  Google Scholar 

  • Stranz, D., & 3rd, M. L. (1998). J. Biomol. Techniques, 9.

    Google Scholar 

  • Sullards, M. C., & Reiter, J. A. (2000). Primary and secondary locations of charge sites in angiotensin II (M + 2H)2+ ions formed by electrospray ionization. J Am Soc Mass Spectrom, 11(1), 40–53.

    Article  PubMed  Google Scholar 

  • Takach, E., Hines, W., Patterson, D., Juhasz, P., Falick, A., Vestal, M., et al. (1997). Accurate mass measurements using MALDI-TOF with delayed extraction. J. Prot. Chem., 16(5), 363–369.

    Article  Google Scholar 

  • Tal, M., Silberstain, A., & Nusser, E. (1985). Why does coomassie brilliant blue R interact differently with different proteins ? a partial answer. J. Biol Chem, 260(18), 9976–9980.

    PubMed  Google Scholar 

  • Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., & Yoshida, T. (1988). Rapid Commun. Mass Spectrom., 2, 151–153.

    Article  Google Scholar 

  • Taranenko, N. I., Tang, K., Allman, S. L., Chang, L. Y., & Chen, C. H. (1994). 3-Aminopicolinic acid as a matrix for laser desorption mass spectrometry of biopolymeres. Rapid Commun. Mass Spectrom., 8, 1001–1006.

    Article  PubMed  Google Scholar 

  • Taylor, J., Anderson, N. L., Scandora, A. E., Jr., Willard, K. E., & Anderson, N. G. (1982). Design and implementation of a prototype Human Protein Index. Clin Chem, 28(4 Pt 2), 861–866.

    PubMed  Google Scholar 

  • Taylor, J. A., & Johnson, R. S. (1997). Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom, 11(9), 1067–1075.

    Article  PubMed  Google Scholar 

  • Thiede, B., Lamer, S., Mattow, J., Siejak, F., Dimmler, C., Rudel, T., et al. (2000). Analysis of missed cleavage sites, tryptophan oxydation and N-Terminal pyroglutamination after in-gel tryptic digestion. Rapid Commun. Mass Spectrom., 14, 496–502.

    Article  PubMed  Google Scholar 

  • Toffoli, T., & Margolus, N. (1987). Cellular automata machines. Cambridge (MA): MIT press.

    Google Scholar 

  • Tonella, L., Walsh, B. J., Sanchez, J. C., Ou, K., Wilkins, M. R., Tyler, M., et al. (1998). ‘98 Escherichia coli SWISS-2DPAGE database update. Electrophoresis, 19(11), 1960–1971.

    Article  PubMed  Google Scholar 

  • Traini, M., Gooley, A. A., Ou, K., Wilkins, M. R., Tonella, L., Sanchez, J. C., et al. (1998a). Towards an automated approach for protein identification in proteome projects. Electrophoresis, 19(11), 1941–1949.

    Article  PubMed  Google Scholar 

  • Traini, M., Gooley, A. A., Ou, K., Wilkins, M. R., Tonella, L., Sanchez, J.-C., et al. (1998b). Towards an automated approach for protein identification in proteome projects. Electrophoresis, 19, 1941–1949.

    Article  PubMed  Google Scholar 

  • Vestal, M., & Jushaz P. (1998). J Am Soc Mass Spectrom., 9, 892–911.

    Article  Google Scholar 

  • Vestal, M. L., Juhasz, P., & Martin, S. A. (1995). Delayed extraction matrix-assisted laser desorption time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 9, 1044–1050.

    Article  Google Scholar 

  • Villanueva, J., Canals, F., Villegas, V., Querol, E., & Avilés, F. (2000). Hydrogen exchange monitored by MALDI-TOF MS for rapid characterization of the stability and conformation of proteins. FEBS letters, 472, 27–33.

    Article  PubMed  Google Scholar 

  • Walsh, B., Molloy, M., & Williams, K. (1998). Electrophoresis, 19, 1883–1890.

    Article  PubMed  Google Scholar 

  • Wang, F., & Tang, X. (1996). Biochemistry, 35, 4069–4078.

    Article  PubMed  Google Scholar 

  • Wei, J., Buriak, J., & Siuzdak, G. (1999). Desorption ionization mass spectrometry on porous silicon. Nature, 399, 243–246.

    Article  PubMed  Google Scholar 

  • Wenschuh, H., Halada, P., Lamer, S., Jungblut, P., & Krause, E. (1998). The ease of peptide detection by MALDI-MS: the effect of secondary structure on signal intensity. Rapid Commun. Mass Spectrom., 12, 115–119.

    Article  PubMed  Google Scholar 

  • Whittal, R., & Li, L. (1995). Anal. Chem., 67, 1950–1954.

    Article  PubMed  Google Scholar 

  • Wilcox, P. (1967). Esterification. Meth. Enzym., 11, 605–616.

    Google Scholar 

  • Wiley, W., & McLaren, I. (1953). Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Instrum., 26, 1150–1157.

    Article  Google Scholar 

  • Wilkins, M., Gasteiger, E., Sanchez, J., Appel, R., & Hochstrasser, D. (1996). Curr. Biol., 6, 1543.

    Article  PubMed  Google Scholar 

  • Wilkins, M., Gasteiger, E., Tonella, L., Ou, K., Tyler, M., Sanchez, J.-C., et al. (1998). J. Mol. Biol., 278, 599–608.

    Article  PubMed  Google Scholar 

  • Wilkins, M. R., Ou, K., Appel, R. D., Sanchez, J. C., Yan, J. X., Golaz, O., et al. (1996). Rapid protein identification using N-terminal "sequence tag" and amino acid analysis. Biochem Biophys Res Commun, 221(3), 609–613.

    Article  PubMed  Google Scholar 

  • Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., Golaz, O., Sanchez, J. C., et al. (1996). From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y), 14(1), 61–65.

    Article  Google Scholar 

  • Williams, K., & Hochstrasser, D. (1997). In Proteome Research: New Frontiers in functional genomics (pp. 1–12). Berlin: Springer-Verlag.

    Google Scholar 

  • Wilm, M., & Mann, M. (1996). Analytical properties of the nanoelectrospray ion source. Anal Chem, 68(1), 1–8.

    Article  PubMed  Google Scholar 

  • Yamashita, M., & Fenn, J. (1984). Phys. Chem., 88, 4451–4459.

    Article  Google Scholar 

  • Yan, J. X., Wilkins, M. R., Ou, K., Gooley, A. A., Williams, K. L., Sanchez, J. C., et al. (1996). Largescale amino-acid analysis for proteome studies. J Chromatogr A, 736(1–2), 291–302.

    Article  PubMed  Google Scholar 

  • Yates, J. R., 3rd, Eng, J. K., & McCormack, A. L. (1995). Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Analytical Chemistry, 67(18), 3202–3210.

    Article  PubMed  Google Scholar 

  • Yates, J. R., III, Speicher, S., Griffin, P. R., & Hunkapiller, T. (1993). Peptide mass maps: A highly informative approach to protein identification. Anal Biochem, 214, 397–408.

    Article  PubMed  Google Scholar 

  • Zenobi, R., & Knochenmuss, R. (1998). Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev., 17, 337–366.

    Article  Google Scholar 

  • Zhang, W., & Chait, B. (2000). Anal. Chem., 72, 2482–2489.

    Article  PubMed  Google Scholar 

  • Zhang, Z., & McElvain, J. (2000). Improvements in protein identification by MALDI-TOF MS peptide mapping. Anal. Chem., 72, 2337–2350.

    Article  PubMed  Google Scholar 

  • Zhu, Y., Chung, C., Taranenko, N., Allmann, S., Martin, S., Haff, L., et al. (1996). The study of 2,3,4-Trihydroxyacetophenone and 2,4,6-Trihydroxyacetophenone as matrix for DNA detection in MALDI-TOF-MS. Rapid Commun. Mass Spectrom., 10, 383–388.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Bienvenut, W. et al. (2005). Proteomics and Mass Spectrometry. In: Bienvenut, W.V. (eds) Acceleration and Improvement of Protein Identification by Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3319-2_8

Download citation

Publish with us

Policies and ethics