Skip to main content

Remodeling in Hypertensive Heart Disease: Role of the Renin-Angiotensin-Aldosterone System

  • Conference paper
  • 412 Accesses

Part of the book series: Basic Science for the Cardiologist ((volume 20))

Conclusions

ANG II has endocrine, autocrine and paracrine properties that influence the behaviour of cardiac cells and matrix via AT1 receptor binding. Thus, various paradigms have been suggested, including ANG II-triggered apoptosis of cardiomyocytes and ANG II-mediated upregulation of collagen types I and II formation and deposition in HHD. On the other hand, a growing body of evidence deals with the potential role of ALDO, either local or systemic, in inducing cardiac fibrosis and apoptosis. Thus, aldosterone might also mediate the profibrotic and proapoptotic actions of ANG II. To reduce the risk of heart failure that accompanies HHD, its adverse structural remodeling must be targeted for pharmacological intervention. Available experimental and clinical data suggest that agents interfering with either ACE, the AT1 receptor, or the mineralocorticoid receptor may provide such a cardioprotective effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262, 1999.

    PubMed  CAS  Google Scholar 

  2. Lloyd-James DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure. The Framingham Heart Study. Circulation 106:3068–3072, 2002.

    Article  Google Scholar 

  3. Tanaka M, Fujiwara H, Onodera T, Wu DJ, Hamashima Y, Kawai C. Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts, and hypertrophic cardiomyopathy. Br Heart J 55:575–581, 1986.

    PubMed  CAS  Google Scholar 

  4. Olivetti G, Melissari M, Balbi T, et al. Myocyte cellular hypertrophy is responsible for ventricular remodelling in the hypertrophied heart of middle aged individuals in the absence of cardiac failure. Cardiovasc Res 28:1199–1208,1994.

    PubMed  CAS  Google Scholar 

  5. Rossi MA. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens 16:1031–1041,1998.

    Article  PubMed  CAS  Google Scholar 

  6. Ciulla M. Paliotti R, Hess DB, et al. Echocardiographic patterns of myocardial fibrosis in hypertensive patients: Endomyocardial biopsy versus ultrasonic tissue characterization. J Am Soc Echocardiogr 10:657–664,1997.

    Article  PubMed  CAS  Google Scholar 

  7. Schwartzkopff B, Brehm M, Mundehenke M, Strauer BE. Repair of coronary arterioles after treatment with perindopril in hypertensive heart disease. Hypertension 36:220–225,2000.

    PubMed  CAS  Google Scholar 

  8. Brilla CG, Funck RC, Rupp RH. Lisinopril-mediated regression of myocardial flbrosis in patients with hypertensive heart disease. Circulation 102:1388–1393, 2000.

    PubMed  CAS  Google Scholar 

  9. Querejeta R, Varo N, López B, et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation 101:1729–1735, 2000.

    PubMed  CAS  Google Scholar 

  10. Querejeta R, López B, González A, et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin. Relation to myocardial fibrosis. Circulation 110:1263–1266, 2004.

    Article  PubMed  CAS  Google Scholar 

  11. González A, López B, Ravassa S, et al. Stimulation of cardiac apoptosis in essential hypertension: potential role of angiotensin II. Hypertension 39:75–80, 2002.

    Article  PubMed  Google Scholar 

  12. Yamamoto S, Sawada K, Shimomura H, Kawamura K, James TN. On the nature of cell death during remodeling of hypertrophied human myocardium. J Mol Cell Cardiol 32:161–175, 2000.

    Article  PubMed  CAS  Google Scholar 

  13. González A, López B, Querejeta R, et al. Cardiomyocyte apoptosis and survival in hypertensive patients with chronic heart failure. Am J Hypertens 17:82A, 2004 (Abstract).

    Article  Google Scholar 

  14. Burlew BS, Weber KT. Cardiac fibrosis as a cause of diastolic dysfunction. Herz 27:92–98, 2002.

    Article  PubMed  Google Scholar 

  15. Díez J, Querejeta R, López B, et al. Losartan-dependent regression of myocardial flbrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105:2512–2517, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Weber KT, Brilla CG, Janicki JS. Myocardial flbrosis: functional significance and regulatory factors. Cardiovasc Res 27:341–348, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Díez J, López B, González A, et al. Clinical aspects of hypertensive myocardial fibrosis. Curr Opin Cardiol 16:328–335, 2001.

    Article  PubMed  Google Scholar 

  18. Bing OHL. Hypothesis. Apoptosis may be a mechanisms for the transition to heart failure with chronic pressure overload. J Mol Cell Cardiol 26:943–948, 1994.

    Article  PubMed  CAS  Google Scholar 

  19. González A, Fortuño MA, Querejeta R, Ravassa S, López B, López N, Díez J. Cardiomyocyte apoptosis in hypertensive cardiomyopathy. Cardiovasc Res 59:549–562, 2003.

    Article  PubMed  CAS  Google Scholar 

  20. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ. Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA 99:6252–6256, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. Laugwitz KL, Moretti A, Weig HJ, et al. Blocking caspase-activated apoptosis improves contractility in failing myocardium. Hum Gene Ther 2001;12:2051–2063, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Weber KT. Fibrosis and hypertensive heart disease. Curr Opin Cardiol 15:264–272, 2000.

    Article  PubMed  CAS  Google Scholar 

  23. González A, López B, Querejeta R, et al. Regulation of myocardial fibrillar collagen by angiotensin II. A role in hypertensive heart disease? J Mol Cell Cardiol 34:1585–1593, 2002.

    Article  PubMed  Google Scholar 

  24. Sun Y, Ramires FJA, Weber KT. Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc Res 35:138–147, 1997.

    Article  PubMed  CAS  Google Scholar 

  25. Jalil JE, Janicki JS, Pick R, Weber KT. Coronary vascular remodeling and myocardial fibrosis in the rat with renovascular hypertension: response to captopril. Am J Hypertens 4:51–55, 1991.

    PubMed  CAS  Google Scholar 

  26. Brilla CG, Matsubara LS, Weber KT. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary aldosteronism. J Mol Cell Cardiol 25:563–575, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Kim S, Ohta K, Hamaguchi A, Yukimura T, Miura K, Iwao H. Angiotensin II-induced cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension 25:1252–1259, 1995.

    PubMed  CAS  Google Scholar 

  28. Crawford DC, Chobanian AV, Brecher P. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circ Res 74:727–739, 1994.

    PubMed  CAS  Google Scholar 

  29. Lee MA, Bohm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol 270:E919–E929, 1996.

    PubMed  CAS  Google Scholar 

  30. Bishop JE, Kiernan LA, Montgomery HE, Gohlke P, Mcewan JR. Raised blood pressure, not renin-angiotensin systems, causes cardiac fibrosis in TGR m(Ren2)27 rats. Cardiovasc Res 47:57–67, 2000.

    Article  PubMed  CAS  Google Scholar 

  31. Pinto YM, Pinto-Sietsma SJ, Philipp T, et al. Reduction in left ventricular messenger RNA for transforming growth factor beta (1) attenuates left ventricular fibrosis and improves survival without lowering blood pressure in the hypertensive TGR(mRen2)27 rat. Hypertension 36:747–754, 2000.

    PubMed  CAS  Google Scholar 

  32. Rothermund L, Kreutz R, Kossmehl P, et al. Early onset of chondroitin sulfate and osteopontin expression in angiotensin II-dependent left ventricular hypertrophy. Am J Hypertens 15:644–652, 2002.

    Article  PubMed  CAS  Google Scholar 

  33. Teisman AC, Pinto YM, Buikema H, et al. Dissociation of blood pressure reduction from end-organ damage in TGR(mREN2)27 trasngenic hypertensive rats. J Hypertens 16:1759–1765, 1998.

    Article  PubMed  Google Scholar 

  34. Brilla CG, Janicki JS, Weber KT. Impaired diastolic function and coronary reserve in genetic hypertension: role of interstitial fibrosis and medial thickening of intramyocardial coronary arteries. Circ Res 69:107–115, 1991.

    PubMed  CAS  Google Scholar 

  35. Varo N, Etayo JC, Zalba G, et al. Losartan inhibits the postranscriptional synthesis of collagen type I and reverses left ventricular fibrosis in spontaneously hypertensive rats. J Hypertens 17:101–114, 1999.

    Google Scholar 

  36. Varo N, Iraburu M, Varela M, López B, Etayo JC, Diez J. Chronic AT1blockade stimulates extracellular collagen type I degradation and reverses myocardial fibrosis in spontaneously hypertensive rats. Hypertension 35:1197–1202, 2000.

    PubMed  CAS  Google Scholar 

  37. López B, Querejeta R, Varo N, et al. Usefulness of serum carboxy-terminal propeptide of procollagen type I in assessment of the cardioreparative ability of antihypertensive treatment in hypertensive patients. Circulation 104:286–291, 2001.

    PubMed  Google Scholar 

  38. Weber KT, Sun Y, Guarda E. Structural remodeling in hypertensive heart disease and the role of hormones. Hypertension 23:869–877, 1994.

    PubMed  CAS  Google Scholar 

  39. Young M, Fullerton M, Dilley R, Funder J. Mineralocorticoids, hypertension, and cardiac fibrosis. J Clin Invest 93:2578–2583, 1994.

    PubMed  CAS  Google Scholar 

  40. Lombes M, Alfaidy N, Eugene E, Lessana A, Farman N, Bonvale t JP. Prerequisite for cardiac aldosterone action. Mineralocorticoid receptor and 11 beta-hydroxysteroid dehydrogenase in the human heart. Circulation 92:175–182, 1995.

    PubMed  CAS  Google Scholar 

  41. Brilla CG, Zhou G, Matsubara L, Weber KT. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol Cell Cardiol 26:809–820, 1994.

    Article  PubMed  CAS  Google Scholar 

  42. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT. Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 67:1355–1364, 1990.

    PubMed  CAS  Google Scholar 

  43. Brilla CG, Matsubara LS, Weber KT. Antifibrotic effects of spironolactone in preventing myocardial fibrosis in systemic arterial hypertension. Am J Cardiol 71:12A–16A, 1993.

    Article  PubMed  CAS  Google Scholar 

  44. Nicoletti A, Heudes D, Hinglais N, et al. Left ventricular fibrosis in renovascular hypertensive rats. Effect of losartan and spironolactone. Hypertension 26:101–111, 1995.

    PubMed  CAS  Google Scholar 

  45. Lacolley P, Safar ME, Lucet B, Ledudal K, Labat C, Benetos A. Prevention of aortic and cardiac fibrosis by spironolactone in old normotensive rats. J Am Coll Cardiol 37:662–667, 2001.

    Article  PubMed  CAS  Google Scholar 

  46. Sun Y, Weber KT. Angiotensin II and aldosterone receptor binding in rat heart and kidney: response to chronic angiotensin II or aldosterone. J Lab Clin Med 122:404–411, 1993.

    PubMed  CAS  Google Scholar 

  47. Robert V, Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C. Angiotensin AT1 receptor subtype as a cardiac target of aldosterone. Role in aldosterone-salt-induced fibrosis. Hypertension 33:981–986, 1999.

    PubMed  CAS  Google Scholar 

  48. Takeda Y, Yoneda T, Demure M, Miyamori I, Mabuchi H. Cardiac aldosterone production in genetically hypertensive rats. Hypertension 36:495–500, 2000.

    PubMed  CAS  Google Scholar 

  49. Yamamoto N, Yasue H, Mizuno Y, et al. Aldosterone is produced from ventricles in patients with essential hypertension. Hypertension 39:958–962, 2002.

    Article  PubMed  CAS  Google Scholar 

  50. Grandi AM, Imperiale D, Santillo R, et al. Aldosterone antagonist improves diastolic function in essential hypertension. Hypertension 40:647–652, 2002.

    Article  PubMed  CAS  Google Scholar 

  51. MacFadyen RJ, Barr CS, Struthers AD. Aldosterone blockade reduces vacular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients. Cardiovasc Res 35:30–34, 1997.

    Article  PubMed  CAS  Google Scholar 

  52. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 102:2700–2706, 2000.

    PubMed  CAS  Google Scholar 

  53. Tsutamoto T, Wada A, Maeda K, et al. Spironolactone inhibits the transcardiac extraction of aldosterone in patients with congestive heart failure. J Am Coll Cardiol 36:838–844, 2000.

    Article  PubMed  CAS  Google Scholar 

  54. Hayashi M, Tsutamoto T, Wada A, et al. Relationship between transcardiac extraction of aldosterone and left ventricular remodeling in patients with first acute myocardial infarction: extracting aldosterone through the heart promotes ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 38:1375–1382, 2001.

    Article  PubMed  CAS  Google Scholar 

  55. Hayashi M, Tsutamoto T, Wada A, et al. Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post-infarct left ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial infarction. Circulation 107:2559–2565, 2003.

    Article  PubMed  CAS  Google Scholar 

  56. Modena MG, Aveta P, Menozzi A, Rossi R. Aldosterone inhibition limits collagen synthesis and progressive left ventricular enlargement after anterior myocardial infarction. Am Heart J. 141:41–46, 2001.

    Article  PubMed  CAS  Google Scholar 

  57. Anversa P, Olivetti G, Leri A, Liu Y, Kajstura J. Myocyte death and ventricular remodeling. Curr Opin Nephrol Hypertens 6:169–176, 1997.

    Article  PubMed  CAS  Google Scholar 

  58. Fortuño MA, Ravassa S, Fortuño A, Zalba G, Díez J. Cardiomyocyte apoptotic cell death in arterial hypertension. Mechanisms and potential management. Hypertension 38:1406–1412, 2001.

    PubMed  Google Scholar 

  59. Diep QN, El Mabrouk M, Yue P, Schiffrin EL. Effect of AT(1) receptor blockade on cardiac apoptosis in angiotensin II-induced hypertension. Am J Physiol 282:H1635–H1641, 2002.

    CAS  Google Scholar 

  60. Díez J, Panizo A, Hernández M, et al. Cardiomyocyte apoptosis and cardiac angiotensin-converting enzyme in spontaneously hypertensive rats. Hypertension 30:1029–1034, 1997.

    PubMed  Google Scholar 

  61. Olivetti G, Melissari M, Balbi T, Quaini F, Sonnenblick EH, Anversa P. Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophic senescent heart in humans. J Am Coll Cardiol 24:140–149, 1994.

    PubMed  CAS  Google Scholar 

  62. Cheng W, Li B, Kajstura J, Li P, et al. Stretch-induced programmed myocyte cell death. J Clin Invest 96:2247–2259, 1995.

    Article  PubMed  CAS  Google Scholar 

  63. Sharov VG, Todor A, Suzuki G, Morita H, Tanhehco EJ, Sabbah HN. Hypoxia, angiotensin-II, and norepinephrine mediated apoptosis is stimulus specific in canine failed cardiomyocytes: a role for p38 MAPK, Fas-L and cyclin D(1). Eur J Heart Fail. 5:121–129, 2003.

    Article  PubMed  CAS  Google Scholar 

  64. Cigola E, Kajstura J, Li B, Meggs LG, Anversa P. Angiotensin II activates programmed myocyte cell death in vitro. Exp Cell Res 231:363–371, 1997.

    Article  PubMed  CAS  Google Scholar 

  65. Kajstura J, Cheng W, Sarangarajan R, et al. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am J Physiol 271:H1215–H1228, 1996.

    PubMed  CAS  Google Scholar 

  66. Ravassa S, Fortuño MA, González A, et al. Mechanisms of increased susceptibility to angiotensin II-induced apoptosis in ventricular cardiomyocytes of spontaneously hypertensive rats. Hypertension 36:1065–1071, 2000.

    PubMed  CAS  Google Scholar 

  67. Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 83:1182–1191, 1998.

    PubMed  CAS  Google Scholar 

  68. Sugino H, Ozono R, Kurisu S, et al. Apoptosis is not increased in myocardium overexpressing type 2 angiotensin II receptor in transgenic mice. Hypertension 37:1394–1398, 2001.

    PubMed  CAS  Google Scholar 

  69. De Angelis N, Fiordaliso F, Latini R, et al. Appraisal of the role of angiotensin II and aldosterone in ventricular myocyte apoptosis in adult normotensive rat. J Mol Cell Cardiol 34:1655–1665, 2002.

    Article  PubMed  Google Scholar 

  70. Mano A, Tatsumi T, Shiraishi J, et al. Aldosterone directly induces myocyte apoptosis through calcineurin-dependent pathways. Circulation 110:317–323, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

González, A., López, B., Querejeta, R., Díez, J. (2006). Remodeling in Hypertensive Heart Disease: Role of the Renin-Angiotensin-Aldosterone System. In: Frohlich, E.D., Re, R.N. (eds) The Local Cardiac Renin Angiotensin-Aldosterone System. Basic Science for the Cardiologist, vol 20. Springer, Boston, MA. https://doi.org/10.1007/0-387-27826-5_14

Download citation

  • DOI: https://doi.org/10.1007/0-387-27826-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27825-4

  • Online ISBN: 978-0-387-27826-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics