Skip to main content

Part of the book series: Advances in Global Change Research ((AGLO,volume 13))

  • 347 Accesses

Abstract

Precipitation retrieval from space which makes use of physical forward radiative transfer modeling requires the proper treatment of all sources of radiation scattering and emission in atmosphere, clouds, and interaction with surfaces. This involves the evaluation of the significance of individual effects with respect to the observed signals. In case of microwave radiation, these effects are the three-dimensional distribution of temperature, humidity, and hydrometeor concentrations, particle size distributions, and particle composition and shape. On the technical side of the problem, the accuracy of the radiative transfer model and the simulation of the radiometer’s imaging specifications are important. Most of the above effects have been described in the past thus a certain background for the generation of retrieval databases from radiative transfer simulations is available. However, there are major drawbacks at the current state of precipitation retrieval: (1) even though individual radiation processes are well described, no synthesis is available combining the best available models; (2) the errors of radiative transfer in realistic clouds are unknown thus limit its use in numerical prediction models together with satellite data; (3) the input to the radiative transfer models, i.e., cloud and precipitation models seem insufficient for the application of retrievals beyond regional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer, P. and P. Schlüssel, 1993: Rainfall, total water, ice water and water-vapour over sea from polarized microwave simulations and SSM/I data, J. Geophys. Res., 98, 20737–20759.

    Google Scholar 

  • Bauer, P., L. Schanz, and L. Roberti, 1998: Correction of three-dimensional effects for passive microwave retrievals of convective clouds. J. Appl. Meteor., 37, 1619–1632.

    Article  Google Scholar 

  • Bauer, P., A. Khain, A. Pokrovsky, R. Meneghini, C. Kummerow, and J.P.V. Poiares Baptista, 2000: Combined cloud-microwave radiative transfer modeling of stratiform rainfall. J. Atmos. Sci., 57, 1082–1104.

    Article  Google Scholar 

  • Bauer, P., 2001 a: Microwave radiative transfer simulation in clouds: Including a melting layer in cloud model bulk hydrometeor distributions. Atmos. Res., 57, 9–30.

    Google Scholar 

  • Bauer, P., 2001b: Over-ocean rainfall retrieval from multi-sensor data of the Tropical Rainfall Measuring Mission (TRMM)-Part I: Development of inversion databases. J. Atmos. Ocean. Tech., 18, 1315–1330.

    Google Scholar 

  • Bauer, P., P. Amayenc, C.D. Kummerow, and E.A. Smith, 2001: Over-ocean rainfall retrieval from multi-sensor data of the Tropical Rainfall Measuring Mission (TRMM)-Part II: Alghorithm inplementation. J. Atmos. Ocean. Tech., 18, 1838–1855.

    Google Scholar 

  • Czekala, H. and C. Simmer, 1998: Microwave radiative transfer with non-spherical precipitating hydrometeors. J. Quant. Spec. Rad. Trans., 60, 365–374.

    CAS  Google Scholar 

  • Chanzy, A. and J.-P. Wigneron, 1999: Microwave emission from soil and vegetation. In: Radiative transfer models for microwave radiometry (Ed: C. Maetzler), COST-712 final report of project 1, University of Bern, pp. 174.

    Google Scholar 

  • Deblonde, G., 1999: Variational assimilation of SSM/I total precipitable water retrievals in the CMC analysis system. Mon. Wea. Rev, 127, 1458–1476.

    Google Scholar 

  • Evans, K.F., S.J. Walter, A.J. Heymsfield, and M.N. Deeter, 1998: Modeling of submillimeter passive remote sensing of cirrus clouds. J. Appl. Meteor., 37, 184–205.

    Article  Google Scholar 

  • Eymard, L., P. Sobieski, D. Lemaire, E. Obligis, S. English, and T. Hewison, 1999: Ocean surface emissivity modeling. In: Radiative transfer models for microwave radiometry (Ed: C. Maetzler), COST-712 final report of project 1, University of Bern, pp. 174.

    Google Scholar 

  • Eyre, J.R., G.A. Kelly, A.P. McNally, E. Andersson, and A. Persson, 1993: Assimilation of TOVS radiance information through one-dimensional variational analysis. Q. J. R. Meteorol. Soc., 119, 1427–1463.

    Article  Google Scholar 

  • Ferrier, B.S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.

    Google Scholar 

  • Haddad, Z., E. Smith, C. Kummerow, T. Iguchi, M. Farrar, S. Durden, M. Alves, and W. Olson, 1997: The TRMM ‘day-1’ radar/radiometer combined rain-profiling algorithm. J. Meteor. Soc. Japan, 75, 799–808.

    Google Scholar 

  • Haferman, J., E. Anagnostou, D. Tsintikidis, W. Krajewski, and T. Smith, 1996: Physically based satellite retrieval of precipitation using a 3-d passive microwave radiative transfer model. J. Atmos. Ocean. Tech., 13, 832–850.

    Google Scholar 

  • Hong, Y., C. Kummerow, and W. Olson, 1999: Separation of convective and stratiform precipitation using microwave brightness temperatures. J. Appl. Meteor., 38, 1195–1213.

    Article  Google Scholar 

  • Joseph, J.H. and W.J. Wiscombe, 1976: The Delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 2452–2459.

    Article  Google Scholar 

  • Kummerow, C., W. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 1213–1232.

    Google Scholar 

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Ocean. Tech., 15, 809–817.

    Google Scholar 

  • Lafore, J.-P. and co-authors, 1998: The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90–109.

    Google Scholar 

  • Liebe, H., P. Rosenkranz, and G. Hufford, 1992: Atmospheric 60 GHz oxygen spectrum: New laboratory measurements and line parameters. J. Quant. Spec. Rad. Trans., 48, 629–643.

    CAS  Google Scholar 

  • Lipton, A.E., M.K. Griffin, and A.G. Ling, 1999: Microwave transfer model differences in remote sensing of cloud liquid water at low temperatures. IEEE Trans. Geosci. Remote Sens, 37, 620–623.

    Google Scholar 

  • Liu, G. and. J.A. Curry, 1992: Retrieval of precipitation from satellite microwave measurement using both emission and scattering. J. Geophys. Res., 97, 9959–9974.

    Google Scholar 

  • McKague, D., K.F. Evans, and S. Avery, 1998: Assessment of the effects of drop size distribution variations retrieved from UHF radar on passive microwave remote sensing of precipitation. J. Appl. Meteor., 37, 155–165.

    Article  Google Scholar 

  • Mitra, S.K., O. Vohl, M. Ahr, and H.R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47, 584–591.

    Article  Google Scholar 

  • Mugnai A. and E.A. Smith, 1988: Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part I: Model description. J. Appl. Meteor., 27 1055–1073.

    Article  Google Scholar 

  • Olson, W., P. Bauer, N. Viltard, D. Johnson, and W.-K. Tao, 2001: A melting layer model for passive / active microwave remote sensing applications-Part I: Model formulation and comparison with observations. J. Appl. Metetor., 40, 1145–1163.

    Google Scholar 

  • Panegrossi, G. and co-authors, 1998: Use of cloud model microphysics for passive microwave-based precipitation retrieval: Significance of consistency between model and measurement manifolds. J. Atmos. Sci., 55, 1644–1673.

    Article  Google Scholar 

  • Petty, G.W. and J. Turk, 1996: Observed multichannel microwave signatures of spatially extensive precipitation in tropical cyclones. Proceedings 8th Conf. Sat. Meteorol. Ocean., Atlanta GA, 291–294.

    Google Scholar 

  • Petty, G.W., A. Mugnai, and E.A. Smith, 1994: Reverse Monte-Carlo simulations of microwave radiative transfer in realistic 3-d rain clouds. Proc. 7th AMS Conf. Sat. Meteor. Ocean., 185–188.

    Google Scholar 

  • Prigent, C., J.R. Pardo, M.I. Mishchenko, and W.B. Rossow, 2001: Microwave polarized scattering signatures in clouds: SSM/I observations with radiative transfer simulations. J. Geophys. Res., 106, 28243–28258.

    Google Scholar 

  • Pullianinen, J., K. Tigerstedt, W. Huining, M. Hallikainen, C. Maetzler, A. Wiesmann, and C. Wegmueller, 1998: Retrieval of geophysical parameters with integrated modeling of land surfaces and atmospheres (models / inversion algorithms. Final Report ESA/ESTEC, Noordwijk, The Netherlands, Contract No. 11706/95/NL/NB(SC), pp. 274.

    Google Scholar 

  • Roberti., L., J. Haferman, and C. Kummerow, 1994: Microwave radiative transfer through horizontally inhomogeneous precipitating cloud. J. Geophys. Res., 99, 16707–16718.

    Article  Google Scholar 

  • Rodgers, C.D., 1976: retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys., 14, 609–624.

    Google Scholar 

  • Schols, J.L., Weinman, J.A., Alexander, G.D., Stewart, R.E., Angus, L.J., and A.C.L. Lee, 1999: Microwave properties of frozen precipitation around a North Atlantic cyclone. J. Appl. Meteor., 38, 29–43.

    Article  Google Scholar 

  • Smith, E.A. and co-authors, 1998: Results of WetNet PIP-2 project. J. Atmos. Sci., 55, 1483–1536.

    Article  Google Scholar 

  • Smith, E.A., P. Bauer, F.S. Marzano, C.D. Kummerow, D. McKague, A. Mugnai, and G. Panegrossi, 2002: Intercomparison of microwave radiative transfer models for precipitating clouds. IEEE Trans. Geosci. Remote Sens., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bauer, P. (2002). Precipitation Modeling for Inversion Purposes. In: Marzano, F.S., Visconti, G. (eds) Remote Sensing of Atmosphere and Ocean from Space: Models, Instruments and Techniques. Advances in Global Change Research, vol 13. Springer, Dordrecht. https://doi.org/10.1007/0-306-48150-2_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48150-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0943-3

  • Online ISBN: 978-0-306-48150-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics