Skip to main content

Lysosomal Cysteine Proteases and Their Protein Inhibitor

  • Chapter
  • 118 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Barrett, N.D. Rawlings, and J.F. Woessner, Jr. Handbook of Proteolytic Enzymes, Academic Press Ltd., London (1998)

    Google Scholar 

  2. B. Turk, D. Turk, and V. Turk, Lysosomal cysteine proteases: more than scavengers, Biochim. Biophys. Acta 1477:98 (2000).

    PubMed  CAS  Google Scholar 

  3. I. Dolenc, B. Turk, G. Pungercic, A. Ritonja, and V. Turk, Oligomeric structure and substrate induced inhibition of human cathepsin C, J. Biol. Chem. 270:21626 (1995).

    PubMed  CAS  Google Scholar 

  4. H.A. Chapman, J.P. Riese, and G.P. Shi, Emerging roles for cysteine proteases in human biology, Annu. Rev. Physiol. 59:63 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. P.J. Berti and A.C. Storer, Alignment/phylogeny of the papain superfamily of cysteine proteases, J. Mol. Biol. 246:273 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. K.M. Karrer, S.L. Peiffer, and M.E. DiTomas, Two distinct gene subfamilies within the family of cysteine protease genes, Proc. Natl. Acad. Sci. USA 90:3063 (1993).

    PubMed  CAS  Google Scholar 

  7. T. Wex., B. Levy, H. Wex, and D. Brömme, Human cathepsins F and: A new subgroup of cathepsins, Biochem. Biophys. Res. Commun. 259:401 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. D. Turk, G. Guncar, M. Podobnik, and B. Turk, Revised definition of substrate binding sites of papain-like cysteine proteases, Biol. Chem. 379:137 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. M.E. McGrath, The lysosomal cysteine proteases, Annu. Rev.Biophys.Biomol.Struct. 28:181 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. S. Pinitglang, A.B. Watts, M. Patel, J.D. Reid, M.A. Noble, S. Gul, A. Bokth, A. Naeem, H. Patel, E.W. Thomas, S.K. Sreedharan, C. Verma, and K. Brocklehurst, A classical enzyme active center motif lacks catalytic competence until modulated electrostatically, Biochemistry 36:9968 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. B. Turk, V. Turk, and D. Turk, Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors, Biol. Chem. 378:141 (1997).

    PubMed  CAS  Google Scholar 

  12. D. Nägler, T. Sulea, and R. Menard, Full-length cDNA of human cathepsin F predicts the presence of a cystatin domain at the N-terminus of the cysteine protease zymogen, Biochem. Biophys. Res. Commun. 257:313 (1999).

    PubMed  Google Scholar 

  13. I. Klemencic, A.K. Carmona, M.H.S. Cezari, M.A. Juliano, L. Juliano, G. Guncar, D. Turk, I. Krizaj, V. Turk, and B. Turk, Biochemical characterization of human cathepsin X revealed that the enzyme is an exopeptidase, acting as carboxymonopeptidase or carboxydipeptidase, Eur. J. Biochem. 267:5404 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. G. Guncar, M. Podobnik, J. Pungercar, B. Strukelj, V. Turk, and D. Turk, Crystal structure of porcine cathepsin H determined at 2.1 å resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function, Structure 6:51 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. D. Musil, D. Zucic, D. Turk, R.A. Engh, L. Mayr, R. Huber, T. Popovic, V. Turk, T. Towatari, N. Katunuma, and W. Bode, The refined 2.15 å X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity, EMBO J. 10:2321 (1991).

    PubMed  CAS  Google Scholar 

  16. G. Guncar, I. Klemencic, B. Turk, V. Turk, A. Karaoglanovic-Carmona, L. Juliano, and D. Turk, Crystal structure of cathepsin X: a flip-flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease, Structure 8:305 (2000).

    PubMed  CAS  Google Scholar 

  17. K. Tao, N.A. Steams, J. Dong, Q.L. Wu, and G.G. Sahagian, The proregion of cathepsin L is required for proper folding, stability, and ER exit, Arch. Biochem. Biophys. 311:19 (1994).

    Article  PubMed  CAS  Google Scholar 

  18. M. Cygler and J.S. Mort, Proregion structure of members of the papain superfamily. Mode of inhibition of enzymatic activity, Biochimie 79:645 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. S.W. Dahl, T. Halkier, C. Lauritzen, I. Dolenc, J. Pedersen, V. Turk, and B. Turk, Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing, Biochemistry submitted (2000).

    Google Scholar 

  20. B. Turk, V. Stoka, V. Turk, G. Johansson, J.J. Cazzulo, and I. Björk, High-molecular-weight kininogen binds two molecules of cysteine proteinases with different rate constants, FEBS Lett. 391:109 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. M. Cygler, J. Sivaraman, P. Grochulski, R. Coulombe, A.C. Storer, and J.S. Mort, Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion, Structure 4:405 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. R. Coulombe, P. Grochulski, J. Sivaraman, R. Mbnard, J.S. Mort, and M. Cygler, Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment, EMBO J. 15:5492 (1996).

    PubMed  CAS  Google Scholar 

  23. J. Sivaraman, M. Lalumière, R. Mbnard, and M. Cygler, Crystal structure of wild-type human procathepsin K, Protein Sci. 8:283 (1999).

    PubMed  CAS  Google Scholar 

  24. J. Roman, J. Stojan, R. Kuhelj, V. Turk, and B. Turk, Autocatalytic processing of recombinant human procathepsin B is a bimolecular process, FEBS Lett. 459:358 (1999).

    Google Scholar 

  25. T. Fox, E. De Miguel, J.S. Mort, and A.C. Storer, Potent slow-binding inhibition of cathepsin B by its prppeptide. Biochemistry 31:12571 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. E. Carmona, E. Dufour, C. Plouffe, S. Takebe, P. Mason, J.S. Mort, and R. Menard, Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases, Biochemistry 35:8149 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. R. Menard, E. Carmona, S. Takebe, E. Dufour, C. Plouffe, P. Mason, and J.S. Mort, Autocatalytic processing of recombinant procathepsin L. Contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. J. Biol. Chem. 273:4478 (1998).

    Article  PubMed  CAS  Google Scholar 

  28. M.S. McQueney, B.Y. Amegadzie, K. D’Alessio, C.H. Hanning, M.M. McLaughlin, D. McNulty, S.A. Carr, C. Ijames, J. Kurdyla, and C.S. Jones, Autocatalytic activation of human cathepsin K, J. Biol. Chem. 272:13955 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. G. Maubach, K. Schilling, W. Rommerskirch, J.E. Schultz, E. Weber, and B. Wiederanders, The inhibition of cathepsin S by its propeptide-specificity and mechanism of action, Eur. J. Biochem. 250:745 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. R.W. Mason and S.D. Massey, Surface activation of pro-cathepsin L, Biochem. Biophys. Res. Commun. 189:1659 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. S.S. Twining, Regulation of proteolytic activities in tissues, CRC Crit. Rev. Biochem. Mol. Biol. 29:315 (1994).

    CAS  Google Scholar 

  32. V. Turk and W. Bode, The cystatins: protein inhibitors of cysteine proteinases, FEBS Lett. 285:213 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. B. Lenarcic and T. Bevec, Thyropins-new structurally related proteinase inhibitors, Biol. Chem. 379:105 (1998).

    PubMed  CAS  Google Scholar 

  34. R.W. Mason, Interaction of lysosomal cysteine proteinases with alpha 2-macroglobulin: conclusive evidence for the endopeptidase activities of cathepsins B and H, Arch. Biochem. Biophys. 273:367 (1989).

    Article  PubMed  CAS  Google Scholar 

  35. C. Schick, D. Brbmme, A.J. Bartuski, Y. Uemura, N.M. Schechter, and G.A. Silverman, The reactive site loop of the serpin SCCA1 is essential for cysteine proteinase inhibition, Proc. Natl. Acad. Sci. USA 95:13465 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. K. Delaria, L. Fiorentino, L. Wallace, P. Tamburini, E. Brownell, and D. Muller, Inhibition of cathepsin L-like cysteine proteases by cytotoxic T-lymphocyte antigen-2 beta, J. Biol. Chem. 269:25172 (1994).

    PubMed  Google Scholar 

  37. A.J. Barrett, N.D. Rawlings, M.E. Davies, W. Machleidt, G. Salvesen, and V. Turk, Cysteine proteinase inhibitors of the cystatin superfamily, in: Proteinase Inhibitors, A.J. Barrett and G. Salvesen, ed. Elsevier, Amsterdam, (1986).

    Google Scholar 

  38. M. Abrahamson and A. Grubb, Increased body temperature accelerates aggregation of the Leu-68 →Gln mutant cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy, Proc. Natl. Acad. Sci. USA 91:1416 (1994).

    PubMed  CAS  Google Scholar 

  39. B. Turk, I. Krizaj, B. Kralj, I. Dolenc, T. Popovic, J.G. Bieth, and V. Turk, Bovine stefin C, a new member of the stefin family, J. Biol. Chem. 268:7323 (1993).

    PubMed  CAS  Google Scholar 

  40. B. Lenarcic, I. Krizaj, P. Zunec, and V. Turk, Differences in specificity for the interactions of stefins A, B and D with cysteine proteinases, FEBS Lett. 395:113 (1996).

    Article  PubMed  CAS  Google Scholar 

  41. J.P. Freije, M. Abrahamson, I. Olafsson, G. Velasco, A. Grubb, and C. Lopez-Otin, Structure and expression of the gene encoding cystatin D, a novel human cysteine proteinase inhibitor, J. Biol. Chem. 266:20538 (1991).

    PubMed  CAS  Google Scholar 

  42. J. Ni, M. Abrahamson, M. Zhang, M.A. Fernandez, A. Grubb, J. Su, G.L. Yu, Y. Li, D. Parmelee, L. Xing, T.A. Coleman, S. Gentz, R. Thotakura, N. Nguyen, M. Hesselberg, and R. Gentz, Cystatin E is a novel human cysteine proteinase inhibitor with structural resemblance to family 2 cystatins, J. Biol. Chem. 272:10853 1997).

    Article  PubMed  CAS  Google Scholar 

  43. G. Sotiropoulou, A. Anisowicz, and R. Sager, Identification, cloning, and characterization of cystatin M, a novel cysteine proteinase inhibitor, down-regulated in breast cancer, J. Biol. Chem. 272:903 (1997).

    PubMed  CAS  Google Scholar 

  44. N.D. Rawlings and A.J. Barrett, Evolution of proteins of the cystatin superfamily, J. Mol. Evol. 30:60 (1990).

    Article  PubMed  CAS  Google Scholar 

  45. R.A. DeLa Cadena and R.W. Colman, Structure and functions of human kininogens, Trends Pharmacol. Sci. 12:272 (1991).

    Google Scholar 

  46. W. Müller-Esterl, S. Iwanaga, and S. Nakanishi, Kininogens revisited, Trends Biochem. Sci. 11:336 (1986).

    Google Scholar 

  47. N. Kitamura, H. Kitagawa, D. Fukushima, T. Takagaki, T. Miyata, and S. Nakanishi, Structural organization of the human kininogen gene and a model for its evolution, J. Biol. Chem. 260:8610 (1985).

    PubMed  CAS  Google Scholar 

  48. G. Salvesen, C. Parkes, M. Abrahamson, A. Grubb, and A.J. Barrett, Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases, Biochem. J. 234:429 (1986).

    PubMed  CAS  Google Scholar 

  49. B. Turk, V. Stoka, I. Bjbrk, C. Boudier, G. Johansson, I. Dolenc, A. Colic, J.G. Bieth, and V. Turk, High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen, Protein Sci. 4:1874 (1995).

    PubMed  CAS  Google Scholar 

  50. M.J.H. Nicklin and A.J. Barrett, Inhibition of cysteine proteinases and dipeptidyl peptidase I by egg-white cystatin, Biochem. J. 223:245 (1984).

    PubMed  CAS  Google Scholar 

  51. P. Lindahl, M. Abrahamson, and I. Bjbrk, Interaction of recombinant human cystatin C with the cysteine proteinases papain and actinidin, Biochem. J. 281:49 (1992).

    PubMed  CAS  Google Scholar 

  52. W. Bode, R. Engh, D. Musil, U. Thiele, R. Huber, A. Karshikov, J. Brzin, J. Kos, and V. Turk, The 2.0 Å X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases, EMBO J. 7:2593 (1988).

    PubMed  CAS  Google Scholar 

  53. M.T. Stubbs, B. Laber, W. Bode, R. Huber, R. Jerala, B. Lenarcic, and V. Turk, The refined 2.4 Å X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction, EMBO J. 9:1939 (1990).

    PubMed  CAS  Google Scholar 

  54. J.R. Martin, C.J. Craven, R. Jerala, L. Kroon-Zitko, E. Zerovnik, V. Turk, and J.P. Waltho, The three-dimensional solution structure of human stefin A, J. Mol. Biol. 246:331 (1995).

    Article  PubMed  CAS  Google Scholar 

  55. S. Estrada, M. Nycander, N.J. Hill, C.J. Craven, J.P. Waltho, and I. Bjbrk, The role of GIy-4 of human cystatin A (stefin A) in the binding of target proteinases. Characterization by kinetic and equilibrium methods of the interactions of cystatin A Gly-4 mutants with papain, cathepsin B, and cathepsin L, Biochemistry 37:7551 (1998).

    Article  PubMed  CAS  Google Scholar 

  56. S. Estrada, A. Pavlova, and I. Bjbrk, The contribution of N-terminal region residues of cystatin A (stefin A) to the affinity and kinetics of inhibition of papain, cathepsin B, and cathepsin L, Biochemistry 38:7339 (1999).

    Article  PubMed  CAS  Google Scholar 

  57. W. Machleidt, U. Thiele, B. Laber, I. Assfalg-Machleidt, A. Esterl, G. Wiegand, J. Kos, V. Turk, and W. Bode, Mechanism of inhibition of papain by chicken egg white cystatin. Inhibition constants of N-terminally truncated forms and cyanogen bromide fragments of the inhibitor, FEBS Lett. 243:234 (1989).

    Article  PubMed  CAS  Google Scholar 

  58. M. Nycander, S. Estrada, J.S. Mort, M. Abrahamson, and I. Björk, Two-step mechanism of inhibition of cathepsin B by cystatin C due to displacement of the proteinase occluding loop, FEBS Lett. 422:61 (1998).

    Article  PubMed  CAS  Google Scholar 

  59. R.W. Mason, Lysosomal metabolism of proteins, in: Biology of the Lysosome, Subcellular Biochemistry, J.B. Lloyd and R.W. Mason, ed., Plenum Press, New York-London, 27:159 (1996).

    Google Scholar 

  60. A.D. Dunn, H.E. Crutchfield, and J.T. Dunn, Thyroglobulin processing by thyroidal proteases. Major sites of cleavage by cathepsins B, D, and L, J, Biol. Chem. 266:20198 (1991).

    CAS  Google Scholar 

  61. C.T. Pham and T.Y. Ley, Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo, Proc. Natl. Acad. Sci. USA 96:8627 (1999)

    Article  PubMed  CAS  Google Scholar 

  62. H. Neurath, Evolution of proteolytic enzymes, Science 224:350 (1984).

    PubMed  CAS  Google Scholar 

  63. H. Kirschke, A.J. Barrett, and N.D. Rawlings, Lysosomal cysteine proteinases, in: Protein Profile, P. Sheterline, ed., Academic Press, London, 2:1587 (1995).

    Google Scholar 

  64. J. Kos, B. Werle, T. Lah, and N. Brunner, Cysteine proteinases and their inhibitors in extracellular fluids: markers for diagnosis and prognosis in cancer, Int. J. Biol. Markers 15:84 (2000).

    PubMed  CAS  Google Scholar 

  65. A.M. Cataldo and R.A. Nixon, Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain, Proc. Natl. Acad Sci. USA 87:3861 (1990).

    PubMed  CAS  Google Scholar 

  66. A.M. Cataldo, P.A. Paskevich, E. Kominami, and R.A. Nixon, Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease, Proc. Natl. Acad Sci. USA 88:10998 (1991).

    PubMed  CAS  Google Scholar 

  67. N. Marks, M.J. Berg, V.S. Sapirstein, R. Durrie, J. Swistok, R.C. Makofske, and W. Danho, Brain cathepsin B but not metalloendopeptidases degrade rAPP75 1 with production of amyloidogenic fragments. Comparison with synthetic peptides emulating beta-and gamma-secretase sites, Int. J. Peptide Protein Res. 46:306 (1995).

    CAS  Google Scholar 

  68. H.G. Bernstein, H. Kirschke, B. Wiederanders, K.H. Pollak, A. Zipress, and A. Rinne, The possible place of cathepsins and cystatins in the puzzle of Alzheimer disease: a review, Mol. Chem. Neuropatol. 27:225 (1996).

    CAS  Google Scholar 

  69. J.S. Tung, S. Sinha, L. McConlogue, C.M.F. Semko, Cathepsin and methods and compositions for inhibition thereof, Athena Neurosciences, Inc. US Patent 469362 (5849711), South San Francisco, (1998).

    Google Scholar 

  70. R. Vassar, B.D. Bennett, S. Babu Khan, S. Kahn, E.A. Mendiaz, P. Denis, D.B. Teplow, S. Ross, P. Amarante, R. Loeloff, Y. Luo, S. Fisher, J. Fuller, S. Edenson, J. Lile, M.A. Jarosinski, A.L. Biere, E. Cum, T. Burgess, J.C. Louis, F. Collins, J. Treanor, G. Rogers, and M. Citron, Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE, Science 286:735 (1999).

    Article  PubMed  CAS  Google Scholar 

  71. A.M. Cataldo, J.L. Barnett, C. Pieroni, and R.A. Nixon, Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis, J. Neurosci. 17:6142 (1997).

    PubMed  CAS  Google Scholar 

  72. C.A. Lemere, J.S. Munger, G.P. Shi, L. Natkin, C. Haass, and H. Chapman, The lysosomal cysteine protease, cathepsin S, is increased in Alzheimer’s disease and Down syndrome brain. An immunocytochemical study, Am. J. Pathol. 146:848 (1995).

    PubMed  CAS  Google Scholar 

  73. C.T. Bever, Jr. and D.W. Garver, Increased cathepsin B activity in multiple sclerosis brain, J. Neurol. Sci. 131:71 (1995).

    Article  PubMed  Google Scholar 

  74. Y. Nakamura, M. Takeda, H. Suzuki, H. Morita, K. Tada, S. Hariguchi, and T. Nishimura, Lysosome instability in aged rat brain, Neurosci. Lett. 97:215 (1989).

    Article  PubMed  CAS  Google Scholar 

  75. X. Bi, A.P. Yong, J. Zhou, C.M. Gall, and G. Lynch, Regionally selective changes in brain lysosomes occur in the transition from young adulthood to middle age in rats, Neurosci. 97:395 (2000).

    Article  CAS  Google Scholar 

  76. P. Bohley and P.O. Seglen, Proteases and proteolysis in the lysosome, Experientia 48: 151 (1992).

    Article  PubMed  CAS  Google Scholar 

  77. H. Nakanishi, K. Tominaga, T. Amano, I. Hirotsu, T. Inoue, and K. Yamamoto, Age-related changes in activities and localizations of cathepsins D, E, B, and L in the rat brain tissues, Exp. Neurol. 26:119 (1994).

    Google Scholar 

  78. E. Bednarski, C.E. Ribak, and G. Lynch, Suppression of cathepsins B and L causes a proliferation of lysosomes and the formation of meganeurites in hippocampus, J. Neurosci. 17:4006 (1997).

    PubMed  CAS  Google Scholar 

  79. X. Bi, J. Zhou, and G. Lynch, Lysosomal protease inhibitors induce meganeurites and tangle-like structures in entorhinohippocampal regions vulnerable to Alzheimer’s disease, Exp. Neurology 158:312 (1999).

    CAS  Google Scholar 

  80. X. Bi, J. Pinkstaff, K. Nguyen, C.M. Gall, and G. Lynch, Experimentally induced lysosomal dysfunction disrupts processing of hypothalamic releasing factors, J. Comparative Neurology 401:382 (1998).

    CAS  Google Scholar 

  81. E. Bednarski, J.C. Lauterborn, C.M. Gall, and G. Lynch, Lysosomal dysfunction reduces brain-derived neurotrophic factor expression, Exp. Neurol. 150:128 (1998).

    Article  PubMed  CAS  Google Scholar 

  82. E. Bednarski and G. Lynch, Selective suppression of cathepsin L results from elevations in lysosomal pH and is followed by proteolysis of tau protein, Neuroreporf 9:2089 (1998).

    CAS  Google Scholar 

  83. T. Yamashima, Y. Kohda, K. Tsuchiya, T. Ueno, J. Yamashita, T. Yoshioka, and E. Kominami, Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on ‘calpain-cathepsin hypothesis’ Eur. J. Neurosci. 10:1723 (1998).

    Article  PubMed  CAS  Google Scholar 

  84. LE. Hill, E. Preston, R. Monette, and J.P. MacManus, A comparison of cathepsin B processing and distribution during neuronal death in rats following global ischemia or decapitation necrosis, Brain Res. 751:206 (1997).

    Article  PubMed  CAS  Google Scholar 

  85. K. Tsuchiya, Y. Kohda, M. Yoshida, L. Zhao, T. Ueno, J. Yamashita, T. Yoshioka, E. Kominami, and T. Yamashima, Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors, Exp. Neurol. 155:187 (1998).

    Google Scholar 

  86. T. Nitatori, N. Sato, S. Waguri, Y. Karasawa, H. Araki, K. Shibanai, E. Kominami and Y. Uchiyama Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis, J Neurosci. 15:1001 (1995).

    PubMed  CAS  Google Scholar 

  87. L.A. Pennacchio, D.M. Bouley, K.M. Higgins, M.P. Scott, J.L. Noebels, and R.M. Myers, Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice, Nature Genet. 20:251 (1998).

    PubMed  CAS  Google Scholar 

  88. G.J. Pilkington, Tumor cell migration in the central nervous system, Brain Pathol. 4:157 (1994).

    PubMed  CAS  Google Scholar 

  89. H. Graeff, N. Harbeck, L. Pache, O. Wilhem, F. Janicke, and M. Schmitt, Prognostic impact and clinical relevance of tumor associated proteases in breast cancer, Fibrinolysis 6:45 (1992).

    Google Scholar 

  90. D. McCormick, Secretion of cathepsin B by human gliomas in vitro, Neuropathol. Appl. Neurobiol. 19:146 (1993).

    Article  PubMed  CAS  Google Scholar 

  91. M. Sivaparvathi, R. Sawaya, S.W. Wang, A. Rayford, M. Yamamoto, L.A. Liotta, G.L. Nicolson, and J.S. Rao, Overexpression and localization of cathepsin B during the progression of human gliomas, Clin. Exp. Metastasis 13:49 (1995).

    Article  PubMed  CAS  Google Scholar 

  92. L.L. Demchik, M. Sameni, K. Nelson, T. Mikkelson, and B.F. Sloane, Cathepsin B and glioma invasion, Int. J. Dev. Neurosci. 17:483 (1999).

    Article  PubMed  CAS  Google Scholar 

  93. T. Mikkelsen, P.S. Yan, K.L. Ho, M. Sameni, B.F. Sloane, and M.L. Rosenblum, Immunolocalization of cathepsin B in human glioma: implications for tumor invasion and angiogenesis, J. Neurosurg. 83:285 (1995).

    PubMed  CAS  Google Scholar 

  94. M. Sivaparvathi, M. Yamamoto, G.L. Nicolson, Z.L. Gokaslan, G.N. Fuller, L.A. Liotta, R. Sawaya, J.S. Rao, Expression and immunohistochemical localization of cathepsin L during the progression of human gliomas, Clin. Exp. Metastasis 14:27 (1996).

    Article  PubMed  CAS  Google Scholar 

  95. M. Sivaparvathi, R. Sawaya, Z.L. Gokaslan, K.S. Chintala, and J.S. Rao, Expression and the role of cathepsin H in human glioma progression and invasion, Cancer Left. 104:121 (1996).

    CAS  Google Scholar 

  96. J. Kos and T.T. Lah, Cysteine proteinases and their endogenous inhibitors: target proteins for prognosis, diagnosis and therapy in cancer, Oncology Reports 5:1349 (1998).

    PubMed  CAS  Google Scholar 

  97. T. Strojnik, J. Kos, B. Zidanek, R. Golouh, and T. Lah, Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors, Clin. Cancer Res. 5:559 (1999).

    PubMed  CAS  Google Scholar 

  98. J.M. Serratosa, R.M. Gardiner, A.E. Lehesjoki, and L. Pennacchio, The molecular genetic bases of the progressive myoclonus epilepsies, Adv. Neurol. 79:383 (1999).

    PubMed  CAS  Google Scholar 

  99. L.A. Pennacchio, A.E. Lehesjoki, N.E. Stone, V.L. Willour, K. Virtaneva, J. Miao, E. D’Amato, L. Ramirez, M. Koskiniemi, J.A. Warrington, R. Norio, A. de la Chapelle, D.R. Cox, and R.M. Myers, Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1), Science 971:1731 (1996).

    Google Scholar 

  100. M.D. Lalioti, H.S. Scott, C. Buresi, C. Rossier, A. Bottani, M.A. Morris, A. Malafosse, and S.E. Antonarakis, Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy, Nature 386:847 (1997).

    Article  PubMed  CAS  Google Scholar 

  101. R.G. Lafreniere, D.L. Rochefort, N. Chretien, J.M. Rommens, R. Kalviainen, U. Nousiainen, G. Patry, K. Farrell, H. Soderfeld, B.R. Hale, O.H. Cossio, T. Sorosen, M.A. Pouliot, T. Kmiec, M.R. Pranzatelli, F. Andermann, E. Andermann, and G. Rouleau, Unstable insertion in the 5′ flanking region of the cystatin B gene is the most common mutation in progressive myoclonus epilepsy type 1, EPMl, Nat. Genet. 15:298 (1997).

    PubMed  CAS  Google Scholar 

  102. M. Lalioti, M. Mirotsou, C. Buresi, M.C. Peitsch, C. Rossier, M. Baldy-Moulinier, A. Bottani, A. Malafosse, and S.E. Antonarakis, Identification of mutations in cystatin B, the gene responsible for the Unverricht-Lundborg type of progressive myoclonus epilepsy (EPMl), Am. J. Hum. Genet. 60:342 (1997).

    PubMed  CAS  Google Scholar 

  103. M. Lalioti, H.S. Scott, P. Genton, D. Grid, R. Ouazzani, A. M’Rabet, S. Ibrahim, R. Gouider, C. Dravet, T. Chkili, A. Bottani, C. Buresi, A. Malafosse, and S.E. Antonarakis, A PCR amplification method reveals instability of the dodecamer repeat in progressive myoclonus epilepsy (EPM1) and no correlation between the size ofthe repeat and age at onset, Am. J. Hum. Genet. 62:842 (1998).

    Article  PubMed  CAS  Google Scholar 

  104. G. Gudmundsson, J. Hallgrimsson, T.A. Jonasson, and O. Bjarnson, Hereditary cerebral haemorrhage with amyloidosis, Brain 95:387 (1972).

    PubMed  CAS  Google Scholar 

  105. O. Jensson, G. Gudmundsson, A. Amason, H. Blöndal, I. Petursdottir, L. Thorsteinsson, A. Grubb, H. Löfberg, D. Cohen, and B. Frangione, Hereditary cystatin C (gamma-trace) amyloid angiopathy of the CNS causing cerebral hemorrhage, Acta Neurol. Scand. 76:102 (1987).

    Article  PubMed  CAS  Google Scholar 

  106. J. Ghiso, O. Jensson, and B. Frangione, Amyloid fibrils in hereditary cerebral hemorrhage with amyloidosis of Icelandic type is a variant of gamma-trace basic protein (cystatin C), Proc. Acad. Sci. USA 83:2974 (1986).

    Article  CAS  Google Scholar 

  107. A. Palsdottir, M. Abrahamson, L. Thorsteinsson, A. Amason, I. Olafsson, A. Grubb, and O. Jensson, Mutation in cystatin C gene causes hereditary brain haemorrhage, Lancet 8611:603 (1988).

    Google Scholar 

  108. A. Grubb, O. Jensson, G. Gudmundsson, A. Amason, H. Lofberg, and J. Malm, Abnormal metabolism of gamma-trace alkaline microprotein. The basic defect in hereditary cerebral hemorrhage with amyloidosis, N. Engl. J. Med. 311:1547 (1984).

    Article  PubMed  CAS  Google Scholar 

  109. I. Ekiel and M. Abrahamson, Folding-related dimerization of human cystatin C, J. Biol. Chem. 271:1314 (1996).

    PubMed  CAS  Google Scholar 

  110. M. Bjarnadottir, B.S. Wulff, M. Sameni, B.F. Sloane, D. Keppler, A. Grubb, M. Abrahamson, Intracellular accumulation of the amyloidogenic L68Q variant of human cystatin C in NIH/3T3 cells, Mol. Pathol. 51:317 (1998).

    PubMed  CAS  Google Scholar 

  111. G. Guncar, G. Pungercic, I. Klemencic, V. Turk, and D. Turk, Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S, EMBO J. 18:793 (1999).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Turk, V., Kos, J., Guncar, G., Turk, B. (2002). Lysosomal Cysteine Proteases and Their Protein Inhibitor. In: Lajtha, A., Banik, N.L. (eds) Role of Proteases in the Pathophysiology of Neurodegenerative Diseases. Springer, Boston, MA. https://doi.org/10.1007/0-306-46847-6_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-46847-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46579-6

  • Online ISBN: 978-0-306-46847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics