Skip to main content
Log in

Influence of an Interaction between Lithium Salts and a Functional Polymorphism in SLC1A2 on the History of Illness in Bipolar Disorder

  • Short Communication
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Bipolar disorder (BD) is a recurrent and disabling illness, characterized by periods of depression and mania. The history of the illness differs widely between patients, with episode frequency emerging as a strong predictor of poor illness outcome. Lithium salts are the first-choice long-term mood-stabilizing therapy, but not all patients respond equally to the treatment. Evidence suggests that alterations in glutamatergic systems may contribute to the pathophysiology of depression. Moreover, glutamate signaling is involved in brain development and synaptic plasticity, both of which are modified in individuals affected by BD, and has been implicated in the etiology of the disorder. The inactivation of glutamate is handled by a series of molecular glutamate transporters (excitatory amino acid transporters [EAATs]), among which EAAT2/SLC1A2 is responsible for up to 95% of extracellular glutamate clearance. A functional single-nucleotide polymorphism at −181 bp from the transcription start site of the SLC1A2 gene has been described. This T-to-G (DNA forward strand) polymorphism, commonly known as SLC1A2 −181A>C, affects transporter expression, with the variant G allele inducing a 30% reduction in promoter activity compared with the T allele.

Objective

The aims of the study were to investigate if factors affecting glutamate function, such as SLC1A2 −181A>C (rs4354668), could affect recurrence of illness in BD, and if they interact with lithium salt treatment.

Methods

We performed an observational study in our university hospital in Milan. We enrolled 110 subjects (76 females, 34 males) affected by BD type I. The exclusion criteria were other diagnoses on Axis I, mental retardation on Axis II, a history of epilepsy, and major medical and neurologic disorders. Fifty-four patients had been treated with lithium salts for more than 6 months. Patients were genotyped for SLC1A2 −181A>C by polymerase chain reaction–restriction fragment length polymorphism, and the influence of genotype on BD episode recurrence rates, and the interaction between the single nucleotide polymorphism and lithium treatment, were analyzed.

Results

The SLC1A2 −181A>C genotype significantly influenced the total recurrence of episodes, with T/T homozygotes showing a significantly lower frequency of episodes (F = 3.26; p = 0.042), and an interaction between lithium treatment and genotype (F = 3.77; p = 0.026) was found to influence the history of the illness.

Conclusion

According to our results, the glutamatergic system could be hypothesized to exert some influence on the history of illness in BD. The SLC1A2 functional polymorphism was shown to significantly influence the total episode recurrence rate, with wild-type T homozygotes presenting the lowest number of episodes, G homozygotes reporting the highest number, and heterozygotes showing an intermediate phenotype. We confirmed the efficacy of lithium treatment in reducing the recurrence of illness in BD, and we found an interaction between lithium treatment and the SLC1A2 −181A>C genotype, confirming previous studies reporting an interaction between lithium salts and the glutamatergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Solomon DA, Keitner GI, Miller IW, Shea MT, Keller MB. Course of illness and maintenance treatments for patients with bipolar disorder. J Clin Psychiatry. 1995;56(1):5–13.

    PubMed  CAS  Google Scholar 

  2. Deister A, Marneros A. Predicting the long-term outcome of affective disorders. Acta Psychiatr Scand. 1993;88(3):174–7.

    Article  PubMed  CAS  Google Scholar 

  3. Gitlin MJ, Swendsen J, Heller TL, Hammen C. Relapse and impairment in bipolar disorder. Am J Psychiatry. 1995;152(11):1635–40.

    PubMed  CAS  Google Scholar 

  4. Nivoli AM, Pacchiarotti I, Rosa AR, Popovic D, Murru A, Valenti M, et al. Gender differences in a cohort study of 604 bipolar patients: the role of predominant polarity. J Affect Disord. 2011;133(3):443–9.

    Article  PubMed  Google Scholar 

  5. Benedetti F, Serretti A, Pontiggia A, Bernasconi A, Lorenzi C, Colombo C, et al. Long-term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-β −50 T/C SNP. Neurosci Lett. 2005;376(1):51–5.

    Article  PubMed  CAS  Google Scholar 

  6. Schloesser RJ, Martinowich K, Manji HK. Mood-stabilizing drugs: mechanisms of action. Trends Neurosci. 2012;35(1):36–46.

    Article  PubMed  CAS  Google Scholar 

  7. Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, et al. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol. 2011;226(10):2484–93.

    Article  PubMed  CAS  Google Scholar 

  8. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.

    Article  PubMed  CAS  Google Scholar 

  9. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16(3):675–86.

    Article  PubMed  CAS  Google Scholar 

  10. Rao JS, Kellom M, Reese EA, Rapoport SI, Kim HW. Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients. J Affect Disord. 2012;136(1–2):63–71.

    Article  PubMed  CAS  Google Scholar 

  11. Meyer T, Ludolph AC, Morkel M, Hagemeier C, Speer A. Genomic organization of the human excitatory amino acid transporter gene GLT-1. Neuroreport. 1997;8(3):775–7.

    Article  PubMed  CAS  Google Scholar 

  12. Mallolas J, Hurtado O, Castellanos M, Blanco M, Sobrino T, Serena J, et al. A polymorphism in the EAAT2 promoter is associated with higher glutamate concentrations and higher frequency of progressing stroke. J Exp Med. 2006;203(3):711–7.

    Article  PubMed  CAS  Google Scholar 

  13. Pampliega O, Domercq M, Villoslada P, Sepulcre J, Rodriguez-Antiguedad A, Matute C. Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. J Neuroimmunol. 2008;195(1–2):194–8.

    Article  PubMed  CAS  Google Scholar 

  14. Matsumoto Y, Suzuki A, Ishii G, Oshino S, Otani K, Goto K. The −181 A/C polymorphism in the excitatory amino acid transporter-2 gene promoter affects the personality trait of reward dependence in healthy subjects. Neurosci Lett. 2007;427(2):99–102.

    Article  PubMed  CAS  Google Scholar 

  15. Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, et al. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry. 2002;7(Suppl. 1):S71–80.

    Article  PubMed  CAS  Google Scholar 

  16. Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL, et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry. 2004;61(7):705–13.

    Article  PubMed  CAS  Google Scholar 

  17. Manji HK, Quiroz JA, Payne JL, Singh J, Lopes BP, Viegas JS, et al. The underlying neurobiology of bipolar disorder. World Psychiatry. 2003;2(3):136–46.

    PubMed  Google Scholar 

  18. Hashimoto K, Sawa A, Iyo M. Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry. 2007;62(11):1310–6.

    Article  PubMed  CAS  Google Scholar 

  19. Singh J, Zarate CA Jr, Krystal AD. Case report: successful riluzole augmentation therapy in treatment-resistant bipolar depression following the development of rash with lamotrigine. Psychopharmacology. 2004;173(1–2):227–8.

    Article  PubMed  CAS  Google Scholar 

  20. Zarate CA Jr, Quiroz JA, Singh JB, Denicoff KD, De Jesus G, Luckenbaugh DA, et al. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiatry. 2005;57(4):430–2.

    Article  PubMed  CAS  Google Scholar 

  21. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17(8):2921–7.

    PubMed  CAS  Google Scholar 

  22. Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA Jr. Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther. 2009;123(2):143–50.

    Article  PubMed  CAS  Google Scholar 

  23. Cecil KM, DelBello MP, Morey R, Strakowski SM. Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disord. 2002;4(6):357–65.

    Article  PubMed  CAS  Google Scholar 

  24. Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, et al. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry. 2004;61(5):450–8.

    Article  PubMed  CAS  Google Scholar 

  25. Castillo M, Kwock L, Courvoisie H, Hooper SR. Proton MR spectroscopy in children with bipolar affective disorder: preliminary observations. AJNR Am J Neuroradiol. 2000;21(5):832–8.

    PubMed  CAS  Google Scholar 

  26. Benedetti F, Calabrese G, Bernasconi A, Cadioli M, Colombo C, Dallaspezia S, et al. Spectroscopic correlates of antidepressant response to sleep deprivation and light therapy: a 3.0 Tesla study of bipolar depression. Psychiatry Res. 2009;173(3):238–42.

    Article  PubMed  CAS  Google Scholar 

  27. Dalvie S, Horn N, Nossek C, van der Merwe L, Stein DJ, Ramesar R. Psychosis and relapse in bipolar disorder are related to GRM3, DAOA, and GRIN2B genotype. Afr J Psychiatry (Johannesbg). 2010;13(4):297–301.

    CAS  Google Scholar 

  28. Leckman JF, Sholomskas D, Thompson WD, Belanger A, Weissman MM. Best estimate of lifetime psychiatric diagnosis: a methodological study. Arch Gen Psychiatry. 1982;39(8):879–83.

    Article  PubMed  CAS  Google Scholar 

  29. McCulloch CE, Searle SR, Neuhaus JM. Generalized, linear, and mixed models. 2nd ed. New York: Wiley; 2008.

    Google Scholar 

  30. Kim K, Timm N. Univariate and multivariate general linear models: theory and applications with SAS. 2nd ed. New York: Chapman and Hall; 2007.

    Google Scholar 

  31. Hill T, Lewicki P. General linear models. In: Hill T, Lewicki P, editors. Statistics: methods and applications. A comprehensive reference for science, industry, and data mining. Tulsa: StatSoft; 2006. p. 245–76.

    Google Scholar 

  32. Bruhn H, Stoppe G, Staedt J, Merboldt KD, Hanicke W, Frahm J. Quantitative proton MRS in vivo shows cerebral myo-inositol and cholines to be unchanged in manic-depressive patients treated with lithium [abstract]. In: Proceedings of the Society of Magnetic Resonance in Medicine: Twelfth Annual Scientific Meeting; 1993 Aug 14–20; New York.

  33. Michael N, Erfurth A, Ohrmann P, Gossling M, Arolt V, Heindel W, et al. Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology. 2003;168(3):344–6.

    Article  PubMed  CAS  Google Scholar 

  34. Yildiz-Yesiloglu A, Ankerst DP. Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(6):969–95.

    Article  PubMed  CAS  Google Scholar 

  35. Strakowski SM, Delbello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry. 2005;10(1):105–16.

    Article  PubMed  CAS  Google Scholar 

  36. McDonald C, Zanelli J, Rabe-Hesketh S, Ellison-Wright I, Sham P, Kalidindi S, et al. Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder. Biol Psychiatry. 2004;56(6):411–7.

    Article  PubMed  Google Scholar 

  37. Lyoo IK, Sung YH, Dager SR, Friedman SD, Lee JY, Kim SJ, et al. Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord. 2006;8(1):65–74.

    Article  PubMed  Google Scholar 

  38. Rajkowska G. Depression: what we can learn from postmortem studies. Neuroscientist. 2003;9(4):273–84.

    Article  PubMed  Google Scholar 

  39. Rao JS, Harry GJ, Rapoport SI, Kim HW. Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry. 2010;15(4):384–92.

    Article  PubMed  CAS  Google Scholar 

  40. Bunch L, Erichsen MN, Jensen AA. Excitatory amino acid transporters as potential drug targets. Expert Opin Ther Targets. 2009;13(6):719–31.

    Article  PubMed  CAS  Google Scholar 

  41. Friedman SD, Dager SR, Parow A, Hirashima F, Demopulos C, Stoll AL, et al. Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol Psychiatry. 2004;56(5):340–8.

    Article  PubMed  CAS  Google Scholar 

  42. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, et al. Whole-genome association study of bipolar disorder. Mol Psychiatry. 2008;13(6):558–69.

    Article  PubMed  CAS  Google Scholar 

  43. Du J, Creson TK, Wu LJ, Ren M, Gray NA, Falke C, et al. The role of hippocampal GluR1 and GluR2 receptors in manic-like behavior. J Neurosci. 2008;28(1):68–79.

    Article  PubMed  CAS  Google Scholar 

  44. Drevets WC, Price JL, Simpson JRJ, Todd RD, Reich T, Vannier M, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;38:824–7.

    Article  Google Scholar 

  45. Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry. 2000;48(8):766–77.

    Article  PubMed  CAS  Google Scholar 

  46. Manji HK, Moore GJ, Chen G. Lithium at 50: have the neuroprotective effects of this unique cation been overlooked. Biol Psychiatry. 1999;46:929–40.

    Article  PubMed  CAS  Google Scholar 

  47. Monkul ES, Matsuo K, Nicoletti MA, Dierschke N, Hatch JP, Dalwani M, et al. Prefrontal gray matter increases in healthy individuals after lithium treatment: a voxel-based morphometry study. Neurosci Lett. 2007;429(1):7–11.

    Article  PubMed  CAS  Google Scholar 

  48. Bora E, Fornito A, Yucel M, Pantelis C. Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry. 2010;67(11):1097–105.

    Article  PubMed  Google Scholar 

  49. Benedetti F, Radaelli D, Poletti S, Locatelli C, Falini A, Colombo C, et al. Opposite effects of suicidality and lithium on gray matter volumes in bipolar depression. J Affect Disord. 2011;135(1–3):139–47.

    Article  PubMed  CAS  Google Scholar 

  50. Lyoo IK, Dager SR, Kim JE, Yoon SJ, Friedman SD, Dunner DL, et al. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study. Neuropsychopharmacology. 2010;35(8):1743–50.

    PubMed  CAS  Google Scholar 

  51. Moore GJ, Cortese BM, Glitz DA, Zajac-Benitez C, Quiroz JA, Uhde TW, et al. A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry. 2009;70(5):699–705.

    Article  PubMed  CAS  Google Scholar 

  52. Sourial-Bassillious N, Rydelius PA, Aperia A, Aizman O. Glutamate-mediated calcium signaling: a potential target for lithium action. Neuroscience. 2009;161(4):1126–34.

    Article  PubMed  CAS  Google Scholar 

  53. Gebhardt C, Cull-Candy SG. Lithium acts as a potentiator of AMPAR currents in hippocampal CA1 cells by selectively increasing channel open probability. J Physiol. 2010;588(Pt 20):3933–41.

    Article  PubMed  CAS  Google Scholar 

  54. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63(4):349–52.

    Article  PubMed  CAS  Google Scholar 

  55. Trotti D, Volterra A, Lehre KP, Rossi D, Gjesdal O, Racagni G, et al. Arachidonic acid inhibits a purified and reconstituted glutamate transporter directly from the water phase and not via the phospholipid membrane. J Biol Chem. 1995;270(17):9890–5.

    Article  PubMed  CAS  Google Scholar 

  56. Zerangue N, Arriza JL, Amara SG, Kavanaugh MP. Differential modulation of human glutamate transporter subtypes by arachidonic acid. J Biol Chem. 1995;270(12):6433–5.

    Article  PubMed  CAS  Google Scholar 

  57. Hassel B, Iversen EG, Gjerstad L, Tauboll E. Up-regulation of hippocampal glutamate transport during chronic treatment with sodium valproate. J Neurochem. 2001;77(5):1285–92.

    Article  PubMed  CAS  Google Scholar 

  58. Frye MA, Helleman G, McElroy SL, Altshuler LL, Black DO, Keck PE Jr, et al. Correlates of treatment-emergent mania associated with antidepressant treatment in bipolar depression. Am J Psychiatry. 2009;166(2):164–72.

    Article  PubMed  Google Scholar 

  59. Post RM, Altshuler LL, Frye MA, Suppes T, Keck PE Jr, McElroy SL, et al. Complexity of pharmacologic treatment required for sustained improvement in outpatients with bipolar disorder. J Clin Psychiatry. 2010;71(9):1176–86. quiz 1252–1253.

    Article  PubMed  Google Scholar 

Download references

Funding Disclosures

None of the authors have financial disclosures that are pertinent to the content of this article. The authors’ research unit received research grants from the Italian Ministry of University and Scientific Research, the Italian Ministry of Health, and the European Union (FP7 grant no. 222963).

Author Contributions

Sara Dallaspezia and Francesco Benedetti designed the study. Francesco Benedetti obtained the funding for the study. Sara Dallaspezia, Sara Poletti, Cristina Colombo, and Francesco Benedetti were involved in the participants’ recruitment and selection. Cristina Lorenzi and Adele Pirovano performed the genotyping. Sara Dallaspezia and Sara Poletti wrote the first draft of the manuscript, with the other authors contributing to data interpretation and final manuscript preparation. All authors take final responsibility for the decision to submit the manuscript for publication. Sara Dallaspezia, Sara Poletti, and Francesco Benedetti had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Dallaspezia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallaspezia, S., Poletti, S., Lorenzi, C. et al. Influence of an Interaction between Lithium Salts and a Functional Polymorphism in SLC1A2 on the History of Illness in Bipolar Disorder. Mol Diagn Ther 16, 303–309 (2012). https://doi.org/10.1007/s40291-012-0004-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-012-0004-5

Keywords

Navigation