Skip to main content

Advertisement

Log in

Abstract

Biodiversity is an important ingredient of environmental conservation and is central to agriculture production. Most microbial diversity of the soil ecosystem is confined to the rhizosphere. Rhizodeposition through plant root exudates plays a major role in defining resident microflora, which differs from that in bulk soil. Rhizobacterial diversity is influenced by both plant and soil type. Soil factors, plant root exudates and agricultural management are the factors that determine the community composition within the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torsvik V, Salte K, Soerheim R, Goksoeyr J (1990) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl Environ Microbiol 53:776–781

    Google Scholar 

  2. Kirk JL, Beaudette A, Hart M, Moutoglis P, Kironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Method 58:169–188

    Article  CAS  Google Scholar 

  3. Abawi GS, Widmer TL (2000) Impact of soil health management practices on soilborne pathogens and root diseases of vegetables. Appl Soil Ecol 15:37–47

    Article  Google Scholar 

  4. Manoharachary C, Tilak KVBR, Maheswari U, Singh D (2009) National conservation and characterization of microbes. Indian Farming 59:24–30

    Google Scholar 

  5. Heilmann B, Lebuhn M, Beese F (1995) Methods for the investigation of metabolic activities and shifts in the microbial community in a soil treated with a fungicide. Biol Fertil Soils 19:186–192

    Article  CAS  Google Scholar 

  6. Hallmann J, Rodriguez-Kabana R, Kloepper JW (1999) Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31:551–560

    Article  CAS  Google Scholar 

  7. Schönfeld J, Gelsomino A, van Overbeek LS, Gorissen A, Smalla K, van Elsas JD (2002) Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiol Ecol 43:63–74

    Article  Google Scholar 

  8. De Leij FAAM, Sutton SJ, Whipps JM, Fenlon JS, Lynch JM (1995) Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial populations of wheat. Appl Environ Microbiol 61:3443–3453

    PubMed  Google Scholar 

  9. Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  10. Ranjard L, Richaume AS (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152:707–716

    Article  PubMed  CAS  Google Scholar 

  11. Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  12. Villich V (1997) Assessment of microbial diversity by fatty acid analysis. Dev Plant Pathol 11:71–74

    Article  Google Scholar 

  13. Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    PubMed  CAS  Google Scholar 

  14. Ovreas L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36:303–315

    Article  PubMed  CAS  Google Scholar 

  15. Liesack W, Janssen PH, Rainey FA, Ward-Rainey NL, Stackebrandt E (2000) Microbial diversity in soil: the need for a combined approach using molecular and cultivation techniques. In: Van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York

    Google Scholar 

  16. Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Ann Rev Phytopathol 42:243–270

    Article  CAS  Google Scholar 

  17. Manoharachary C, Kunwar IK, Sharat Babu K (2006) Rhizosphere: the hidden ecological niche and hot spot. Proc Nat Acad Sci India 76(B):321–342

    Google Scholar 

  18. Nautiyal CS (2000) Biocontrol of plant diseases for agricultural sustainability. In: Upadhyay RK, Mukherji KG, Chamola C (eds) Biocontrol potential and its exploration in sustainable agriculture. Kluwer Academic, Dordrecht

    Google Scholar 

  19. Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK (2005) Diversity of plant growth and soil supporting bacteria. Curr Sci 89(1):136–150

    CAS  Google Scholar 

  20. Nautiyal CS (2006) Biological control of plant diseases by natural and genetically engineered fluorescent Pseudomonas spp. In: Ray RC, Owen PW (eds) Microbial biotechnology in horticulture. Science Publishers, Enfield

    Google Scholar 

  21. Jaeger CH, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    PubMed  CAS  Google Scholar 

  22. Germida JJ, Siciliano SD, de Renato FJ, Seib AM (1998) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. FEMS Microbiol Ecol 26:43–50

    Article  CAS  Google Scholar 

  23. Kaiser O, Puhler A, Selbitschka W (2001) Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. Microb Ecol 42:136–149

    PubMed  CAS  Google Scholar 

  24. Kowalchuk GA, Buma DS, De Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520

    Article  PubMed  Google Scholar 

  25. Brimecombe MJ, De Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinto R, Varanini Z, Nannipierei P (eds) The rhizosphere. Marcel Dekker, New York

    Google Scholar 

  26. Singh BK, Walker A, Morgan JAW, Wright DJ (2003) Effect of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos degrading bacterium. Appl Environ Microbiol 69:5198–5206

    Article  PubMed  CAS  Google Scholar 

  27. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  Google Scholar 

  28. Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  PubMed  CAS  Google Scholar 

  29. Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1451

    Article  CAS  Google Scholar 

  30. Yang CH, Crowley DE, Menge JA (2001) 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiol Ecol 35:129–136

    Article  PubMed  CAS  Google Scholar 

  31. Macrae A, Lucon CMM, Rimmer DL, O’Donnell AG (2001) Sampling DNA from the rhizosphere of Brassica napus to investigate rhizobacterial community structure. Plant Soil 233:223–230

    Article  CAS  Google Scholar 

  32. Fromin N, Achouak W, Thiery JM, Heulin T (2001) The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of Arabidopsis thaliana: influence of plant genotype. FEMS Microbiol Ecol 37:21–29

    Article  CAS  Google Scholar 

  33. Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178

    Article  PubMed  CAS  Google Scholar 

  34. Normander B, Prosser JI (2000) Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol 66:4372–4377

    Article  PubMed  CAS  Google Scholar 

  35. Gomes NCM, Heuer H, Schonfeld J, Costa R, Hagler-Mendonca L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180

    Article  CAS  Google Scholar 

  36. Schwieger F, Tebbe CC (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album). Linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Environ Microbiol 66:3356–3365

    Article  Google Scholar 

  37. Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed  CAS  Google Scholar 

  38. Rademaker JLW, Louws FJ, Rossbach U, de Bruijn FJ (1999) Computer-assisted pattern analysis of molecular fingerprints and database construction. In: Akkermans A, van Elsas JD, DeBruijn FJ (eds) Molecular microbial ecology Manual. Kluwer Academic Publisher, Dodrecht

    Google Scholar 

  39. Stephan A, Meyer AH, Schmid B (2000) Plant diversity affects culturable soil bacteria in experimental grassland communities. J Ecol 22:988–998

    Article  Google Scholar 

  40. Spehn EM, Joshi J, Schmid B (2000) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224:217–230

    Article  CAS  Google Scholar 

  41. Haack SK, Garchow H, Klug MJ (1995) Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Appl Environ Microbiol 61:1458–1468

    PubMed  CAS  Google Scholar 

  42. Kim KY, Jordan D, McDonald GA (1998) Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biol Biochem 30:995–1003

    Article  CAS  Google Scholar 

  43. Insam H, Domsch KH (1988) Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microbial Ecol 15:177–188

    Article  Google Scholar 

  44. Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854

    Article  PubMed  CAS  Google Scholar 

  45. Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field grown genetically modified Brassica napus. FEMS Microbiol Ecol 38:1–9

    Article  CAS  Google Scholar 

  46. Di Giovanni GD, Wastrud LS, Seidler RJ, Widmar F (1999) Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and entero-bacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR). Microb Ecol 37:129–139

    Article  PubMed  Google Scholar 

  47. Misko AL, Germida J (2002) Taxonomic and functional diversity of pseudomonads isolated from the roots of field-grown canola. FEMS Microbiol Ecol 42:399–407

    Article  PubMed  CAS  Google Scholar 

  48. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  49. van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Ann Rev Phytopathol 36:453–459

    Article  Google Scholar 

  50. Mittal S, Johri BN (2007) Assessment of rhizobacterial diversity of Triticum aestivum and Eleusine coracana from northern region of India. Curr Sci 93:1530–1537

    Google Scholar 

  51. Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV, Whitham TG, Hart SC (2008) Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781

    Article  PubMed  Google Scholar 

  52. Picard C, di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955

    Article  PubMed  CAS  Google Scholar 

  53. di Cello F, Bevivino L, Chiarini R, Fani R, Paffetti D (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493

    PubMed  Google Scholar 

  54. Seldin L, Rosado AS, da Cruz DW, Nobrega A, van Elsas JD (1998) Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non-root-associated soil from maize planted in two different Brazilian soils. Appl Environ Microbiol 64:3860–3868

    PubMed  CAS  Google Scholar 

  55. Nacamulli CB, Dalmastri C, Tabacchioni S, Chiarini L (1997) Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MCI 7. FEMS Microbiol Ecol 23:183–193

    Article  CAS  Google Scholar 

  56. Baudoin E, Benizri E, Guckert A (2002) Impact of growth stages on bacterial community structure along maize roots by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Article  Google Scholar 

  57. Gyamfi S, Pfeifer U, Stierschneider M, Sessitch A (2002) Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere. FEMS Microbiol Ecol 41:181–190

    Article  PubMed  CAS  Google Scholar 

  58. Xu Y, Wang G, Jin J, Liu J, Zhang Q, Liu X (2009) Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biol Biochem 41:919–925

    Article  CAS  Google Scholar 

  59. Kowalchuk G, Bruinsma M, van Veen JA (2003) Assessing responses of soil microorganisms to GM plants. Trends Ecol Evol 18:403–410

    Article  Google Scholar 

  60. Heuer H, Kroppenstedt RM, Lottmann J, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl Environ Microbiol 68:1325–1335

    Article  PubMed  CAS  Google Scholar 

  61. Ahrenholtz I, Harms K, de Vries J, Wackernagel W (2000) Increased killing of Bacillus subtilis on the hair roots of transgenic T4 lysozyme-producing potatoes. Appl Environ Microbiol 2000(66):1862–1865

    Article  Google Scholar 

  62. Gelsomino A, Keijzer-Wolters A, Cacco G, van Elsas JD (1999) Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Methods 38:1–15

    Article  PubMed  CAS  Google Scholar 

  63. Groffman PM, Hanson CC, Kiviat E, Stevens G (1996) Variation in microbial biomass and activity in four different wetland types. Soil Sci Soc Am J 60:622–629

    Article  CAS  Google Scholar 

  64. Chiarini L, Bevivino A, Dalmastri C, Nacamulli C, Tabacchioni S (1998) Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Appl Soil Ecol 8:11–18

    Article  Google Scholar 

  65. da Silva KRA, Salles JF, Seldin L, van Elsas JD (2003) Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere. J Microbiol Methods 54:213–231

    Article  PubMed  CAS  Google Scholar 

  66. Latour X, Corberand T, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456

    PubMed  CAS  Google Scholar 

  67. Buyer JS, Roberts DP, Russek-Cohen E (1999) Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol 45:138–144

    Article  CAS  Google Scholar 

  68. Kuske CR, Ticknor LO (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68:1854–1863

    Article  PubMed  CAS  Google Scholar 

  69. Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol 40:43–56

    PubMed  CAS  Google Scholar 

  70. Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of fluorescent Pseudomonads. Appl Environ Microbiol 61:1004–1012

    PubMed  CAS  Google Scholar 

  71. Araujo MAV, Mendonca-Hagler LC, Hagler AN, van Elsas JD (1994) Survival of genetically modified Pseudomonas fluorescens introduced into subtropical soil microcosm. FEMS Microbiol Ecol 13:205–216

    Article  Google Scholar 

  72. Boeuf-Tremblay V, Plantureux S, Guckert A (1995) Influence of mechanical impedance on root exudation of maize seedlings at two development stages. Plant Soil 172:279–287

    Article  CAS  Google Scholar 

  73. Dashman T, Stotzky G (1984) Adsorption and binding of peptides on homoionic montmorillonite and kaolinite. Soil Biol Biochem 16:51–55

    Article  CAS  Google Scholar 

  74. Meharg AA, Killham K (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant Soil 170(345):349

    Google Scholar 

  75. Rovira AD (1969) Plant root exudates. Bot Rev 35:35–60

    Article  CAS  Google Scholar 

  76. Hale MG, Moore LD (1979) Factors affecting root exudation. Adv Agron 31:93–98

    Article  CAS  Google Scholar 

  77. McCully NM (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Ann Rev Plant Physiol Mol Biol 50:695–702

    Article  CAS  Google Scholar 

  78. Uren NC (2007) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil-plant interface. FLCRC Press, Boca Raton

    Google Scholar 

  79. Heijnen CE, Hok-A-Hin CH, Van Elsas JD (1993) Root colonization by Pseudomonas fluorescens introduced into soil amended with bentonite. Soil Biol Biochem 25:239–246

    Article  Google Scholar 

  80. Höper H, Steinberg C, Alabouvette C (1995) Involvement of clay type and pH in the mechanisms of soil suppressiveness to fusarium wilt of flax. Soil Biol Biochem 27:955–967

    Article  Google Scholar 

  81. Ownley BH, Weller DM, Alldredge JR (1992) Relation of soil chemical and physical factors with suppression of take-all by Pseudomonas fluorescens 2–79. In: Keel C, Koller B, Défago G (eds) Plant growth-promoting rhizobacteria: progress and prospects. IOBC/WPRS bulletin, Zurich

    Google Scholar 

  82. Lemanceau P (1989) Role of competition for carbon and iron in mechanisms of soil suppressiveness to Fusarium wilts. In: Tjamos EC, Beckman CH (eds) Vascular wilt diseases of plants: basic studies and control. Springer, Berlin

    Google Scholar 

  83. Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155

    Article  Google Scholar 

  84. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth promoting rhizobacteria. Curr Microbiol 4:317–330

    Article  CAS  Google Scholar 

  85. Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Bot Res 26:1–133

    Article  Google Scholar 

  86. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:159–170

    Article  Google Scholar 

  87. Saxena AK, Tilak KVBR (1994) Interaction among beneficial soil microorganisms. Indian J Microbiol 34:91–106

    Google Scholar 

  88. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  89. Okon Y, Bloemberg GV, Lugtenberg BJJ (1998) Biotechnology of biofertilization and phytostimulation. In: Altman A (ed) Agricultural biotechnology. Marcel Dekker, New York

    Google Scholar 

  90. Malik RDS, Kavimandan SK, Tilak KVBR (1996) Soil microorganisms increase agricultural production. Indian FMG 2:15–16

    Google Scholar 

  91. Gupta A, Gopal M, Saxena AK, Tilak KVBR (2003) Effects of co-inoculation of plant growth promoting rhizobacteria and Bradyrhizobium sp. (Vigna) on growth and yield of green gram (Vigna radiata (L.) Wilczek). Trop Agric 80:28–35

    Google Scholar 

  92. Tilak KVBR (2007) Biofertilizers: prospects and potentials. J Ecofriendly Agric 2(1):1–19

    Google Scholar 

  93. Pal KK, Tilak KVBR, Saxena AK, Dey R, Singh CS (2001) Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiol Res 156:209–223

    Article  PubMed  CAS  Google Scholar 

  94. Nautiyal CS, Mehta S, Singh HB (2006) Biological control and plant growth-promoting Bacillus strains from milk. J Microbiol Biotechnol 16:184–192

    Google Scholar 

  95. Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan (L) Milsp.). Eur J Soil Sci 57:67–71

    Article  CAS  Google Scholar 

  96. Venkateswalu B, Desai S, Prasad YG (2009) Agriculturally important microorganisms for selected ecosystems: challenges in technology development and application. In: Khachatourians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms, vol 1. Academic World International, New Delhi, p 2009

    Google Scholar 

  97. Nautiyal CS, Tilak KVBR (2009) Agriculturally important rhizobacteria as bioinoculants for enhancing plant growth and soil health. In: Khachatourians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms, vol 11. Academic World International, New Delhi

    Google Scholar 

  98. Tiedje JM, Asuming-Brempong S, Nusslein K, Marsch TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109–120

    Article  Google Scholar 

  99. Clegg CD, Lovell RDL, Hobbus PJ (2003) The impact of grassland management regime on the community structure of selected bacterial groups in soil. FEMS Microbiol Ecol 43:263–270

    Article  PubMed  CAS  Google Scholar 

  100. Nusslein K, Tiedje JM (1999) Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65:3622–3626

    PubMed  CAS  Google Scholar 

  101. Ibekwe AM, Kennedy AC, Frohne PS, Papriernik SK, Yang CH (2002) Microbial diversity along a transect of agronomic zones. FEMS Microbiol Ecol 39:183–191

    Article  PubMed  CAS  Google Scholar 

  102. van Elsas JD, Garbeva P, Salles JF (2002) Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation 13:29–40

    Article  PubMed  Google Scholar 

  103. Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1998) Soil microbial community structure: effects of substrate loading rates. Soil Biol Biochem 31:145–153

    Article  Google Scholar 

  104. Nannipieri P, Ascher J, Ceccherini MT, Loretta L, Giacomo P, Giancarlo R (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  105. Sandaa RA, Torsvik V, Enger Ø (2001) Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol Biochem 33:287–295

    Article  CAS  Google Scholar 

  106. Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  107. Abadieu C, Edel V, Alabouvette C (1998) Soil suppressiveness to Fusarium wilt: influence of a cover-plant on density and diversity of Fusarium populations. Soil Biol Biochem 30:643

    Article  Google Scholar 

  108. van Bruggen AHC, Semenov AM (1999) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (KVBRT) is thankful to The National Academy of Sciences, India for providing him financial support as Senior Scientist platinum Jubilee Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. B. R. Tilak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, R., Pal, K.K. & Tilak, K.V.B.R. Influence of Soil and Plant Types on Diversity of Rhizobacteria. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 82, 341–352 (2012). https://doi.org/10.1007/s40011-012-0030-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-012-0030-4

Keywords

Navigation