Skip to main content
Log in

Enhancement of in vitro culture efficiency of mesenchymal stem cells derived from deer antlers

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The annual regrowth of deer antlers is a connatural developmental event in mammals. Therefore, studying regeneration of deer antlers could be a unique natural model of rapid and complete bone regeneration in human and other mammals. However, little is known about culture conditions and regulatory factors that stimulate growing of deer antler cells in vitro. The aim of this study was to enhance an in vitro culture efficiency of mesenchymal stem cells (MSCs) derived from deer antlers. In order to improve the culture condition, we selected minimal essential medium alpha (MEMα) as a basal medium and investigate whether serum could stimulate growing in these cells in basal medium in a dose-dependent manner. Next, to investigate the optimal temperature and O2 tension, the antler cells were cultured in different temperature and controlled O2 percentages. Through the results of number of harvested cells after 1 week, we selected MEMα, 10% fetal bovine serum (FBS), 37°C, 20% O2, and 5% CO2 tension as a basic culture conditions. Also, we could observed enhanced proliferation results by addition of the supplements [L-glutamine 2 mM, β-mercaptoethanol 100 μM, non-essential amino acid (NEAA) 0.1 mM, and HEPES 10 mM] and growth factors [basic fibroblast growth factor (bFGF) 10 ng/mL, epidermal growth factor (EGF) 20 ng/mL, insulin-like growth factor-1 (IGF-1) 10 ng/mL] and harvested antler cells strongly expressed STRO-1 and CD 90. Our results demonstrate that allow continuous proliferation of antler cells in vitro established the foundation to basic biology of antler cells and makes possible application to the regenerative medicine in a broad sence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J Price, C Faucheux, S Allen, Deer antlers as a model of mammalian regeneration, Curr Top Dev Biol, 67, 1 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. P Muir, A Sykes, G Barrell, Growth and mineralisation of antlers in red deer (Cervus elaphus), New Zeal J Agr Res, 30, 305 (1987).

    Article  CAS  Google Scholar 

  3. HJ Rolf, U Kierdorf, H Kierdorf, et al., Localization and characterization of STRO-1 cells in the deer pedicle and regenerating antler, PLoS One, 3, e2064 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  4. C Li, W Wang, T Manley T, et al., No direct mitogenic effect of sex hormones on antlerogenic cells detected in vitro, Gen Comp Endocrinol, 124, 75 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. L Bartos, D Schams, U Kierdorf, et al., Cyproterone acetate reduced antler growth in surgically castrated fallow deer, J Endocrinol, 164, 87 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. L Bartos, D Schams, GA Bubenik, Testosterone, but not IGF-1, LH, prolactin or cortisol, may serve as antler-stimulating hormone in red deer stags (Cervus elaphus), Bone, 44, 691 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. M Sadighi, S Haines, A Skottner, et al., Effects of insulin-like growth factor-I (IGF-I) and IGF-II on the growth of antler cells in vitro, J Endocrinol, 143, 461 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. M Sadighi, C Li, RP Littlejohn, et al., Effects of testosterone either alone or with IGF-I on growth of cells derived from the proliferation zone of regenerating antlers in vitro, Growth Horm IGF Res, 11, 240 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. HJ Rolf, KG Wiese, H Siggelkow, et al., In vitro studies with antler bone cells: Structure forming capacity, osteocalcin production and influence of sex steroids, Osteology, 15, 245 (2006).

    Google Scholar 

  10. ML Meistrich, ME van Beek, Spermatogonial stem cells. In: C Desjardins, LL Ewing eds. Cell and Molecular Biology of the Testis, NY: Oxford University Press, 266 (1993).

    Google Scholar 

  11. MF Pittenger, AM Mackay, SC Beck, et al., Multilineage potential of adult human mesenchymal stem cells, Science, 284, 143 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. MB Lutz, S Rossner, Factors influencing the generation of murine dendritic cells from bone marrow: the special role of fetal calf serum, Immunobiology, 212, 855 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. NP Rhodes, JK Srivastava, RF Smith, et al., Heterogeneity in proliferative potential of ovine mesenchymal stem cell colonies, J Mater Sci Mater Med, 15, 397 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. K Uchida, K Urabe, K Naruse, et al., Comparison of the cytokine-induced migratory response between primary and subcultured populations of rat mesenchymal bone marrow cells, J Orthop Sci, 12, 484 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. W Pradel, R Mai, T Gedrange, et al., Cell passage and composition of culture medium effects proliferation and differentiation of human osteoblast-like cells from facial bone, J Physiol Pharmacol, 59, 47 (2008).

    PubMed  Google Scholar 

  16. LA Solchaga, B Johnstone, JU Yoo, et al., High variability in rabbit bone marrow-derived mesenchymal cell preparations, Cell Transplant, 8, 511 (1999).

    CAS  PubMed  Google Scholar 

  17. C Werren, J Diaz-Romero, W Brehm, et al., Influence of culture conditions on expansion and re-differentiation of chondrocytes from horses of different ages, Pferdeheilkunde, 24, 193 (2008).

    Google Scholar 

  18. E Kuzmova, R Kotrba, HJ Rolf, et al., Factors affecting the number of STRO-1+ stem cells derived from regenerating antler and pedicle cells of red and fallow deer, Anim Prod Sci, 52, 746 (2011).

    Article  Google Scholar 

  19. KM Ko, TT Yip, SW Tsao, et al., Epidermal growth factor from deer (Cervus elaphus) submaxillary gland and velvet antler, Gen Comp Endocrinol, 63, 431 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. JG Mount, M Muzylak, S Allen, et al., Evidence that the canonical Wnt signalling pathway regulates deer antler regeneration, Dev Dyn, 235, 1390 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. DK Berg, C Li, G Asher, et al., Red deer cloned from antler stem cells and their differentiated progeny, Biol Reprod, 77, 384 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. C Li, RP Littlejohn, JM Suttie, Effects of insulin-like growth factor 1 and testosterone on the proliferation of antlerogenic cells in vitro, J Exp Zool, 284, 82 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. C Faucheux, SA Nesbitt, MA Horton, et al., Cells in regenerating deer antler cartilage provide a microenvironment that supports osteoclast differentiation, J Exp Biol, 204, 443 (2001).

    CAS  PubMed  Google Scholar 

  24. J Sanchez-Adams, KA Athanasiou, Dermis isolated adult stem cells for cartilage tissue engineering, Biomaterials, 33, 109 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. S Walsh, GR Jordan, C Jefferiss et al., High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis, Rheumatology (Oxford), 40, 74 (2001).

    Article  CAS  Google Scholar 

  26. DL Stocum, Regenerative Biology and Medicine, Amsterdam: Elsevier Academic Press (2006).

    Google Scholar 

  27. DM Gardiner, SV Bryant, Tetrapod li,b regeneration. In: BK Hall ed. Fins into Limbs: Evolution, Development, and Transformation, Chicago: University of Chicago Press, 163 (2007).

    Google Scholar 

  28. PM Barling, AK Lai, LF Nicholson, Distribution of EGF and its receptor in growing red deer antler, Cell Biol Int, 29, 229 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. M Schenker, BM Riederer, T Kuntzer, et al., Thyroid hormones stimulate expression and modification of cytoskeletal protein during rat sciatic nerve regeneration, Brain Res, 957, 259 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. ED Rabinovsky, The multifunctional role of IGF-1 in peripheral nerve regeneration, Neurol Res, 26, 204 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. GA Bubenik, Endocrine regulation of the antler cycle. In: RD Brown, ed. Antler Development in Cervidae, TX: Caesar Kleberg Wildlife Research Institute Kingsville, 73 (1982).

    Google Scholar 

  32. Z Jaczewski, The artificial induction of antler growth in deer. In: RD Brown, ed. Antler Development in Cervidae, TX: Caesar Kleberg Wildlife Research Institute Kingsville, 143 (1982).

    Google Scholar 

  33. JS Price, BO Oyajobi, ROC Oreffo, et al., Cells cultured from the growing tip of red deer antler express alkaline phosphatase and proliferate in response to insulin-like growth factor, J. Endocrinol, 143, R9 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. E Kuzmova, L Bartos, R Kotrba, et al., Effect of different factors on proliferation of antler cells, cultured in vitro, Effect of different factors on proliferation of antler cells, cultured in vitro, PLoS One, 6, e18053 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. C Li, X Gao, F Yang, et al., Development of a nude mouse model for the study of antlerogenesis—mechanism of tissue interactions and ossification pathway, J Exp Zool B Mol Dev Evol, 312, 118 (2009).

    Article  PubMed  Google Scholar 

  36. C Li, AJ Harris, JM Suttie, Tissue interactions and antlerogenesis new findings revealed by a xenograft approach, J Exp Zool, 290, 18 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. M Nagano, BY Ryu, CJ Brinster, et al., Maintenance of mouse male germ line stem cells in vitro, Biol Reprod, 68, 2207 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. BY Ryu, H Kubota, MR Avardock, et al., Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat, Proc Natl Acad Sci USA, 102, 14302 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. T Ezashi, P Das, RM Rpberts, Low O2 tensions and the prevention of differentiation of hES cells, Proc Natl Acad Sci USA, 102, 4783 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. A Nagy, M Gertsenstein, K Vintersten, et al., A laboratory manual. In: A Nagy, ed. Manipulating the Mouse Embryo, NY: Cold Spring Harbor Laboratory Press, 359 (2003).

    Google Scholar 

  41. N Jaiswal, SE Haynesworth, AI Caplan, et al., Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro, J Cell Biochem, 64, 295 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buom-Yong Ryu.

Additional information

These authors equally contributed to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KJ., Yoo, HD., Kim, YH. et al. Enhancement of in vitro culture efficiency of mesenchymal stem cells derived from deer antlers. Tissue Eng Regen Med 11 (Suppl 1), 16–23 (2014). https://doi.org/10.1007/s13770-013-1124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-013-1124-7

Key words

Navigation