Skip to main content
Log in

Thermodynamic Analysis and Comparison of the Air-Standard Atkinson and Dual-Atkinson Cycles with Heat Loss, Friction and Variable Specific Heats of Working Fluid

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Employing finite-time thermodynamics, the effects of irreversibility factors, i.e., friction, heat transfer of cylinder wall, compression and expansion efficiencies and variable specific heats (temperature-dependent specific heats of the working fluid) on the air-standard Atkinson and Dual-Atkinson cycles are analyzed. In addition, a numerical comparison between the Atkinson and Dual-Atkinson cycles is made. Moreover, numerical examples show the relations between the thermal efficiency and compression ratio and between power and compression ratio. As mentioned, compression ratio, r c, initial temperature, T 1, specific heat defined by a p, b v and k 1, friction defined by b and heat transfer defined by \({\alpha}\) and \({\beta}\) are some of the key parameters of the internal combustion engines. The effects of these on the performances of the Atkinson and Dual-Atkinson cycles are presented in this article. According to the findings, the thermal efficiency and the output power of the Dual-Atkinson are higher than those of the Atkinson cycle at the same condition. Also, these irreversibility factors must be considered to design and analyze the Atkinson and Dual-Atkinson cycles. The obtained results also will provide guidance for the design of internal combustion engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a p :

Constant related to constant-pressure molar Specific heat (J/mol K)

b v :

Constant related to constant-v molar Specific heat (J/mol K)

b :

Constant related to friction (kW)

C p :

Molar specific heat with constant pressure (J/mol K)

C v :

Molar specific heat with constant volume (J/mol K)

\({f_{\mu}}\) :

Friction force (N)

k :

Specific heats ratio (k = C p/C v)

k 1 :

Constant (J/mol K2)

K 1 :

Constant (s/K)

K 2 :

Constant (s/K)

M :

Molar number of working fluid (kmol)

P :

Power (kW)

\({P_{\mu}}\) :

Lost power due the friction term (kW)

Q in :

Heat added to the working fluid (kJ)

Q out :

Heat rejected by the working fluid (kJ)

r c :

Compression ratio

r e :

Expansion ratio

r p :

Pressure ratio

R :

Gas molar constant of the working fluid (J/mol K)

s :

Entropy (J/mol K)

t :

Time (s)

T i :

Temperature at state i (K)

V i :

Volume at state i (m 3)

W :

Net work output (kJ)

x :

Piston displacement (m)

\({\alpha}\) :

Constant related to combustion (J/mol)

\({\beta}\) :

Constant related to heat transfer (J/mol K)

\({\eta}\) :

Thermal efficiency

\({\mu}\) :

Coefficient of friction (N s/m)

\({\nu}\) :

Velocity (m/s)

\({\nu_{0}}\) :

Piston’s mean velocity (m/s)

\({\tau}\) :

Cycle period (s)

c:

Compression

e:

Expansion

1, 2, 3, 4 and 5:

State points

References

  1. Bejan A.: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J. Appl. Phys. 79, 1191–1218 (1996)

    Article  Google Scholar 

  2. Ge Y., Chen L., Sun F., Wu C.: Performance of an Atkinson cycle with heat transfer, friction and variable specific-heats of the working fluid. Appl. Energy 83, 1210–1221 (2006)

    Article  Google Scholar 

  3. Zhao Y., Chen L.: Performance analysis and parametric optimum criteria of an irreversible Atkinson heat-engine. Appl. Energy 83, 789–800 (2006)

    Article  Google Scholar 

  4. Gahruei M.H., Shahmirzae Jeshvaghani S., Vahidi S., Chen L.: Mathematical modeling and comparison of air standard Dual and Dual-Atkinson cycles with friction, heat transfer and variable specific-heats of the working fluid. Appl. Math. Modell. 37, 7319–7329 (2013)

    Article  MathSciNet  Google Scholar 

  5. Lin J.C., Hou S.S.: Influence of heat loss on the performance of an air-standard Atkinson cycle. Appl. Energy 84, 904–920 (2007)

    Article  Google Scholar 

  6. Chen J., Lin J., Sun F., Wu C.: Efficiency of an Atkinson engine at maximum power density. Energy Convers Manag. 39, 337–341 (1998)

    Article  Google Scholar 

  7. Ebrahimi R.: Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Math. Comput. Modell. 53, 1289–1297 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhao J., Xu M., Li M., Wang B., Liu S.: Design and optimization of an Atkinson cycle engine with the Artificial Neural Network Method. Appl. Energy 92, 492–502 (2012)

    Article  Google Scholar 

  9. Ozsoysal O.A.: Effects of combustion efficiency on a Dual cycle. Energy Convers. Manag. 50, 2400–2406 (2009)

    Article  Google Scholar 

  10. Chen L., Ge Y., Sun F., Wu C.: Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible Dual cycle. Energy Convers. Manag. 47, 3224–3234 (2006)

    Article  Google Scholar 

  11. Ge Y., Chen L., Sun F.: Finite-time thermodynamic modeling and analysis for an irreversible Dual cycle. Math. Comput. Model. 50, 101–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hou S.S.: Heat transfer effects on the performance of an air standard Dual cycle. Energy Convers. Manag. 45, 3003–3015 (2003)

    Article  Google Scholar 

  13. Chen L., Sun F., Wu C.: Optimal performance of an irreversible Dual-cycle. Appl. Energy 79, 3–14 (2004)

    Article  Google Scholar 

  14. Ust Y., Sahin B., Kodal A.: Optimization of a Dual cycle cogeneration system based on a new exergetic performance criterion. Appl. Energy 84, 1079–1091 (2007)

    Article  Google Scholar 

  15. Wang W., Chen L., Sun F., Wu C.: The effect of friction on the performance of an air standard dual cycle. Exergy Int. J. 2, 340–344 (2002)

    Article  Google Scholar 

  16. Ge Y., Chen L., Sun F., Wu C.: Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid. Int. J. Therm. Sci. 44, 506–511 (2005)

    Article  Google Scholar 

  17. Chen L., Wu C., Sun F., Cao S.: Heat transfer effects on the net work output and efficiency characteristics for an air-standard Otto cycle. Energy Convers. Manag. 39, 643–648 (1998)

    Article  Google Scholar 

  18. Ge Y., Chen L., Sun F.: Finite-time thermodynamic modelling and analysis of an irreversible Otto cycle. Appl. Energy 85, 618–624 (2008)

    Article  Google Scholar 

  19. Lin J.C., Hou S.S.: Effects of heat loss as percentage of fuel’s energy, friction and variable specific heats of working fluid on performance of air standard Otto cycle. Energy Convers. Manag. 49, 1218–1227 (2008)

    Article  Google Scholar 

  20. Al-Hinti I., Akash B., Abu-Nada E., Al-Sarkhi A.: Performance analysis of air-standard Diesel cycle using an alternative irreversible heat transfer approach. Energy Convers. Manag. 49, 3301–3304 (2008)

    Article  Google Scholar 

  21. Al-Sarkhi A., Jaber J.O., Abu-Qudais M., Probert S.D.: Effects of friction and temperature-dependent specific-heat of the working fluid on the performance of a Diesel engine. Appl. Energy 83, 153–165 (2006)

    Article  Google Scholar 

  22. Ge Y., Chen L., Sun F., Wu C.: Reciprocating heat-engine cycles. Appl. Energy 81, 397–408 (2005)

    Article  Google Scholar 

  23. Ozsoysal O.A.: Heat loss as a percentage of fuels energy in air standard Otto and Diesel cycles. Energy Convers. Manag. 47, 1051–1062 (2006)

    Article  Google Scholar 

  24. Hou S.S.: Comparison of performances of air standard Atkinson and Otto cycles with heat transfer considerations. Energy Convers. Manag. 48, 1683–1690 (2007)

    Article  Google Scholar 

  25. Parlak A.: Comparative performance analysis of irreversible Dual and Diesel cycles under maximum power conditions. Energy Convers. Manag. 46, 351–359 (2005)

    Article  Google Scholar 

  26. Rashidi M.M., Mousapour A., Hajipour A.: Comment on the effects of heat transfer on the exergy efficiency of an air-standard Otto cycle by Hakan Özcan, Heat and Mass Transfer (2011) 47:571–577. Heat Mass Transf. 50, 1177–1183 (2014)

    Article  Google Scholar 

  27. Rashidi M.M., Hajipour A., Mousapour A., Ali M., Gongnan Xie., Freidoonimehr N.: First and second-law efficiency analysis and ANN prediction of a diesel cycle with internal irreversibility, variable specific heats, heat loss, and friction considerations. Adv. Mech. Eng. 6, 359872 (2014)

    Article  Google Scholar 

  28. Rashidi M.M., Hajipour A., Fahimirad A.: First and second-laws analysis of an air-standard dual cycle with heat loss consideration. Int. J. Mechatron. Elect. Comput. Technol. 4, 315–332 (2014)

    Google Scholar 

  29. Rashidi M.M., Hajipour A., Baziar P.: Influence of heat loss on the second-law efficiency of an Otto cycle. Int. J. Mechatron. Elect. Comput. Technol. 4, 922–933 (2014)

    Google Scholar 

  30. Rashidi M.M., Galanis N., Nazari F., Basiri Parsa A., Shamekhi L.: Parametric analysis and optimization of regenerative clausius and organic rankine cycles with two feedwater heaters using artificial bees colony and artificial neural network. Energy 36, 5728–5740 (2011)

    Article  Google Scholar 

  31. Rashidi M.M., Anwar Bég O., Habibzadeh A.: First and second law analysis of an ejector expansion Joule-Thomson cryogenic refrigeration cycle. Int. J. Energy Res. 36, 231–240 (2012)

    Article  Google Scholar 

  32. Habibzadeh A., Rashidi M.M., Galanis N.: Analysis of a combined power and ejector-refrigeration cycle using low temperature heat. Energy Convers. Manag. 65, 381–391 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hajipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajipour, A., Rashidi, M.M., Ali, M. et al. Thermodynamic Analysis and Comparison of the Air-Standard Atkinson and Dual-Atkinson Cycles with Heat Loss, Friction and Variable Specific Heats of Working Fluid. Arab J Sci Eng 41, 1635–1645 (2016). https://doi.org/10.1007/s13369-015-1903-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1903-7

Keywords

Navigation