Skip to main content
Log in

Overexpression of miR-218 inhibits hepatocellular carcinoma cell growth through RET

  • Research Article
  • Published:
Tumor Biology

Abstract

Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world with poor prognosis. Here, we investigated the role of microRNA 218 (miR-218) in regulating human HCC development. Quantitative PCR (qPCR) was used to compare the expression levels of miR-218 between eight HCC and a normal liver cell lines, as well as nine primary HCC tissues and adjacent non-carcinoma tissues. HCC cell lines MHCC97L and Huh7 were transfected with lentiviral vector of miR-218 mimics. The effect of miR-218 overexpression on cancer cell growth, both in vitro and in vivo, as well as cancer cell invasion was examined. A bioinformatic method was used to predict the binding of miR-218 to RET proto-oncogene (RET). Small interfering RNA (SiRNA)-mediated genetic knock-down of RET was performed in MHCC97L and Huh7 cells, and its modulatory effect on miR-218-mediated HCC development was examined. miR-218 was found to be downregulated in HCC cell lines and primary HCC tissues. Overexpression of miR-218 in MHCC97L or Huh7 cells resulted in significant decrease in cell proliferation and invasion capability. Overexpression of miR-218 also reduced the tumor growth of xenografted Huh7 cells in vivo. The expression of endogenous RET was found to be upregulated by miR-218, and siRNA-induced RET downregulation resulted in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) upregulation and reversal of the inhibitory effect of miR-218 upregulation on HCC proliferation. Our results indicate that miR-218 modulates HCC development, and this effect may be through RET and PTEN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008. Int J Cancer. 2010;27:2893–917.

    Article  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Rahbari NN, Mehrabi A, Mollberg NM, Muller SA, Koch M, Buchler MW, et al. Hepatocellular carcinoma: current management and perspectives for the future. Ann Surg. 2011;253:453–69.

    Article  PubMed  Google Scholar 

  4. Worns MA, Galle PR. Future perspectives in hepatocellular carcinoma. Dig Liver Dis. 2010;42 Suppl 3:S302–309.

    Article  PubMed  Google Scholar 

  5. Fan ST, Le Treut YP, Mazzaferro V, Burroughs AK, Olausson M, Breitenstein S, Frilling A: Liver transplantation for neuroendocrine tumour liver metastases. HPB : the official journal of the International Hepato Pancreato Biliary Association 2014

  6. Page AJ, Weiss MJ, Pawlik TM: Surgical management of noncolorectal cancer liver metastases. Cancer 2014.

  7. Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;15:563–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  9. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science. 2005;310:1817–21.

    Article  CAS  PubMed  Google Scholar 

  10. Greve TS, Judson RL, Blelloch R. MicroRNA control of mouse and human pluripotent stem cell behavior. Annu Rev Cell Dev Biol. 2013;29:213–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113:6207–33.

    Article  CAS  PubMed  Google Scholar 

  12. Bouyssou JM, Manier S, Huynh D, Issa S, Roccaro AM, Ghobrial IM. Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta. 1845;2014:255–65.

    Google Scholar 

  13. Huang J, Zhang SY, Gao YM, Liu YF, Liu YB, Zhao ZG, et al. MicroRNAs as oncogenes or tumour suppressors in oesophageal cancer: potential biomarkers and therapeutic targets. Cell Prolif. 2014;47:277–86.

    Article  CAS  PubMed  Google Scholar 

  14. Ishiguro H, Kimura M, Takeyama H. Role of microRNAs in gastric cancer. World J Gastroenterol. 2014;20:5694–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seton-Rogers S. Tumour suppressors: hippo promotes microRNA processing. Nat Rev Cancer. 2014;14:216–7.

    Article  PubMed  Google Scholar 

  16. Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 2013;73:473–7.

    Article  CAS  PubMed  Google Scholar 

  17. Xin SY, Feng XS, Zhou LQ, Sun JJ, Gao XL, Yao GL. Reduced expression of circulating microRNA-218 in gastric cancer and correlation with tumor invasion and prognosis. World J Gastroenterol. 2014;20:6906–11.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Uesugi A, Kozaki K, Tsuruta T, Furuta M, Morita K, Imoto I, et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res. 2011;71:5765–78.

    Article  CAS  PubMed  Google Scholar 

  19. He X, Dong Y, Wu CW, Zhao Z, Ng SS, Chan FK, et al. MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol Med. 2012;18:1491–8.

    CAS  PubMed Central  Google Scholar 

  20. Li J, Ping Z, Ning H. MiR-218 impairs tumor growth and increases chemo-sensitivity to cisplatin in cervical cancer. Int J Mol Sci. 2012;13:16053–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature. 1996;381:785–9.

    Article  CAS  PubMed  Google Scholar 

  22. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–81.

    Article  CAS  PubMed  Google Scholar 

  23. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18:382–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kodama Y, Asai N, Kawai K, Jijiwa M, Murakumo Y, Ichihara M, et al. The RET proto-oncogene: a molecular therapeutic target in thyroid cancer. Cancer Sci. 2005;96:143–8.

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi M. The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev. 2001;12:361–73.

    Article  CAS  PubMed  Google Scholar 

  26. Yin L, Puliti A, Bonora E, Evangelisti C, Conti V, Tong WM, et al. C620r mutation of the murine RET proto-oncogene: loss of function effect in homozygotes and possible gain of function effect in heterozygotes. Int J Cancer. 2007;121:292–300.

    Article  CAS  PubMed  Google Scholar 

  27. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7:606–19.

    Article  CAS  PubMed  Google Scholar 

  28. Janus A, Robak T, Smolewski P. The mammalian target of the rapamycin (mTOR) kinase pathway: its role in tumourigenesis and targeted antitumour therapy. Cell Mol Biol Lett. 2005;10:479–98.

    CAS  PubMed  Google Scholar 

  29. Hu TH, Huang CC, Lin PR, Chang HW, Ger LP, Lin YW, et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer. 2003;97:1929–40.

    Article  CAS  PubMed  Google Scholar 

  30. Cao LQ, Chen XL, Wang Q, Huang XH, Zhen MC, Zhang LJ, et al. Upregulation of PTEN involved in rosiglitazone-induced apoptosis in human hepatocellular carcinoma cells. Acta Pharmacol Sin. 2007;28:879–87.

    Article  CAS  PubMed  Google Scholar 

  31. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian T, Nan KJ, Guo H, Wang WJ, Ruan ZP, Wang SH, et al. PTEN inhibits the migration and invasion of HepG2 cells by coordinately decreasing MMP expression via the PI3K/Akt pathway. Oncol Rep. 2010;23:1593–600.

    CAS  PubMed  Google Scholar 

  33. Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, et al. MicroRNA gene expression profile of hepatitis c virus-associated hepatocellular carcinoma. Hepatology. 2008;47:1223–32.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang LS, Liang WB, Gao LB, Li HY, Li LJ, Chen PY, et al. Association between pri-miR-218 polymorphism and risk of hepatocellular carcinoma in a Han Chinese population. DNA Cell Biol. 2012;31:761–5.

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Ping Z, Ning H. MiR-218 impairs tumor growth and increases chemo-sensitivity to cisplatin in cervical cancer. Int J Mol Sci. 2012;13:16053–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Authors’ contribution

This study was designed by Jiamei Yang. Acquisition of data was performed by Chengjun Sui, Feng Xu, Jiongjiong Lu, and Minfeng Zhang. Weifeng Shen, Li Geng, Feng Xie, and Binghua Dai analyzed and interpreted the results. The manuscript was drafted by Chengjun Sui. Revision was done by Chengjun Sui and Jiamei Yang. Author E provided statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiamei Yang.

Additional information

Chengjun Sui and Feng Xu contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, C., Xu, F., Shen, W. et al. Overexpression of miR-218 inhibits hepatocellular carcinoma cell growth through RET. Tumor Biol. 36, 1511–1518 (2015). https://doi.org/10.1007/s13277-014-2679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2679-1

Keywords

Navigation