Skip to main content

Advertisement

Log in

A let-7 KRAS rs712 polymorphism increases colorectal cancer risk

  • Research Article
  • Published:
Tumor Biology

Abstract

Growing evidence has indicated that polymorphism present in the miRNA binding site of target gene can alter the ability of miRNAs to bind its target gene and modulate the development and progression of cancer. We aimed to investigate the association between let-7 KRAS rs712 polymorphism and the risk of colorectal cancer (CRC). The let-7 KRAS rs712 was analyzed in a case–control study, including 339 CRC patients and 313 age- and sex-matched controls; the relationship between the polymorphism and the clinicopathological features of CRC was also examined. Individuals carrying the let-7 KRAS rs712 TT genotype and T allele had an increased risk of developing CRC (TT vs. GG, adjusted OR = 2.18; 95 % CI, 1.00–4.77; T vs. G, adjusted OR = 1.50; 95 % CI, 1.15–1.96). Stratified analyses revealed that CRC patients with the let-7 KRAS rs712 TT genotype were more likely to have clinical stage III or IV disease (OR = 3.29, 95 % CI, 1.32–8.20) and distant metastasis (OR = 4.70, 95 % CI, 1.81–12.25). These findings provide evidence that the let-7 KRAS rs712 polymorphism may play crucial roles in the etiology of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.

    Article  PubMed  Google Scholar 

  2. Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J Clin. 2009;59(6):366–78.

    Article  PubMed  Google Scholar 

  3. Center MM, Jemal A, Ward E. International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1688–94.

    Article  PubMed  Google Scholar 

  4. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    Article  PubMed  Google Scholar 

  5. Nguyen SP, Bent S, Chen YH, Terdiman JP. Gender as a risk factor for advanced neoplasia and colorectal cancer: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2009;7(6):676–81. e1-3.

    Article  PubMed  Google Scholar 

  6. Chao A, Thun MJ, Connell CJ, McCullough ML, Jacobs EJ, Flanders WD, et al. Meat consumption and risk of colorectal cancer. JAMA. 2005;293(2):172–82.

    Article  CAS  PubMed  Google Scholar 

  7. Park Y, Hunter DJ, Spiegelman D, Bergkvist L, Berrino F, van den Brandt PA, et al. Dietary fiber intake and risk of colorectal cancer: a pooled analysis of prospective cohort studies. JAMA. 2005;294(22):2849–57.

    Article  CAS  PubMed  Google Scholar 

  8. Harriss DJ, Atkinson G, George K, Cable NT, Reilly T, Haboubi N, et al. Lifestyle factors and colorectal cancer risk (1): systematic review and meta-analysis of associations with body mass index. Color Dis. 2009;11(6):547–63.

    Article  CAS  Google Scholar 

  9. Gao LB, Rao L, Wang YY, Liang WB, Li C, Xue H, et al. The association of interleukin-16 polymorphisms with IL-16 serum levels and risk of colorectal and gastric cancer. Carcinogenesis. 2009;30(2):295–9.

    Article  CAS  PubMed  Google Scholar 

  10. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  11. Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, et al. Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 2009;34(4):1069–75.

    CAS  PubMed  Google Scholar 

  12. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;5:29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008;68(20):8535–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gao Y, He Y, Ding J, Wu K, Hu B, Liu Y, et al. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1alpha 3′ untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis. 2009;30(12):2064–9.

    Article  CAS  PubMed  Google Scholar 

  15. Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W. Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis. 2008;29(7):1306–11.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang W, Winder T, Ning Y, Pohl A, Yang D, Kahn M, et al. A let-7 microRNA-binding site polymorphism in 3′-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann Oncol. 2011;22(1):104–9.

    Article  CAS  PubMed  Google Scholar 

  17. Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, et al. A let-7 microRNA-binding site polymorphism in the KRAS 3′ UTR is associated with reduced survival in oral cancers. Carcinogenesis. 2009;30(6):1003–7.

    Article  CAS  PubMed  Google Scholar 

  18. Graziano F, Canestrari E, Loupakis F, Ruzzo A, Galluccio N, Santini D, et al. Genetic modulation of the Let-7 microRNA binding to KRAS 3′-untranslated region and survival of metastatic colorectal cancer patients treated with salvage cetuximab-irinotecan. Pharmacogenomics J. 2010;10(5):458–64.

    Article  CAS  PubMed  Google Scholar 

  19. Wang WY, Chien YC, Wong YK, Lin YL, Lin JC. Effects of KRAS mutation and polymorphism on the risk and prognosis of oral squamous cell carcinoma. Head Neck. 2012;34(5):663–6.

    Article  PubMed  Google Scholar 

  20. Li Z H, Pan X M, Han B W, Guo X M, Zhang Z, Jia J, et al. A let-7 binding site polymorphism rs712 in the KRAS 3′ UTR is associated with an increased risk of gastric cancer. Tumour Biol. 2013

  21. Kranenburg O. The KRAS oncogene: past, present, and future. Biochim Biophys Acta. 2005;1756(2):81–2.

    CAS  PubMed  Google Scholar 

  22. Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature. 1987;327(6120):293–7.

    Article  CAS  PubMed  Google Scholar 

  23. Boughdady IS, Kinsella AR, Haboubi NY, Schofield PF. K-ras gene mutations in adenomas and carcinomas of the colon. Surg Oncol. 1992;1(4):275–82.

    Article  CAS  PubMed  Google Scholar 

  24. Esquela-Kerscher A, Slack FJ. Oncomirs–microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.

    Article  CAS  PubMed  Google Scholar 

  25. Vickers MM, Bar J, Gorn-Hondermann I, Yarom N, Daneshmand M, Hanson JE, et al. Stage-dependent differential expression of microRNAs in colorectal cancer: potential role as markers of metastatic disease. Clin Exp Metastasis. 2012;29(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  26. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635–47.

    Article  CAS  PubMed  Google Scholar 

  27. Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull. 2006;29(5):903–6.

    Article  CAS  PubMed  Google Scholar 

  28. Paranjape T, Heneghan H, Lindner R, Keane FK, Hoffman A, Hollestelle A, et al. A 3′-untranslated region KRAS variant and triple-negative breast cancer: a case–control and genetic analysis. Lancet Oncol. 2011;12(4):377–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hollestelle A, Pelletier C, Hooning M, Crepin E, Schutte M, Look M, et al. Prevalence of the variant allele rs61764370 T>G in the 3′UTR of KRAS among Dutch BRCA1, BRCA2 and non-BRCA1/BRCA2 breast cancer families. Breast Cancer Res Treat. 2011;128(1):79–84.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Pharoah PD, Palmieri RT, Ramus SJ, Gayther SA, Andrulis IL, Anton-Culver H, et al. The role of KRAS rs61764370 in invasive epithelial ovarian cancer: implications for clinical testing. Clin Cancer Res. 2011;17(11):3742–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Nelson HH, Christensen BC, Plaza SL, Wiencke JK, Marsit CJ, Kelsey KT. KRAS mutation, KRAS-LCS6 polymorphism, and non-small cell lung cancer. Lung Cancer. 2010;69(1):51–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, et al. A let-7 microRNA SNP in the KRAS 3′UTR is prognostic in early-stage colorectal cancer. Clin Cancer Res. 2011;17(24):7723–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (no. 81302149), Natural Science Foundation of the Science and Technology Department of Henan Province (no. 132300410105), the Ph.D. Scientific Research Foundation of Henan University of Science and Technology (no. 09001492).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Min Pan.

Additional information

Xin-Min Pan and Rui-Fen Sun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, XM., Sun, RF., Li, ZH. et al. A let-7 KRAS rs712 polymorphism increases colorectal cancer risk. Tumor Biol. 35, 831–835 (2014). https://doi.org/10.1007/s13277-013-1114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1114-3

Keywords

Navigation