Skip to main content
Log in

Translation invariant diffusions in the space of tempered distributions

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper we prove existence and pathwise uniqueness for a class of stochastic differential equations (with coefficients σ ij , b i and initial condition y in the space of tempered distributions) that may be viewed as a generalisation of Ito’s original equations with smooth coefficients. The solutions are characterized as the translates of a finite dimensional diffusion whose coefficients σ ij \(\tilde y\), b i \(\tilde y\) are assumed to be locally Lipshitz.Here ★ denotes convolution and \(\tilde y\) is the distribution which on functions, is realised by the formula \(\tilde y\left( r \right): = y\left( { - r} \right)\). The expected value of the solution satisfies a non linear evolution equation which is related to the forward Kolmogorov equation associated with the above finite dimensional diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. S. Borkar, Evolution of Brownian particles in an interacting medium, Stochastics, 14 (1984), 33–79.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Fukushima, Y. Oshima and M. Tayeda, Dirichlet Forms and symmetric Markov Processes, de Gruyter studies in Mathematics 19, Walter de Gruyter (1994).

    Book  MATH  Google Scholar 

  3. F. Treves, Topological vector spaces, distributions and kernels, Academic Press (1967).

    MATH  Google Scholar 

  4. L. Gawarecki, V. Mandrekar and B. Rajeev, The Monotonicity Inequality for Linear Stochastic Partial Differential Equations, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 12(4) (2009), 575–591.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland (1981).

    MATH  Google Scholar 

  6. O. Kallenberg, Foundations of Modern Probability, (2nd Edition), Springer Verlag (2010).

    Google Scholar 

  7. K. Ito, On a Stochastic Integral Equation, Proc. Acad Imperial, Tokyo, 22 (1946), 32–35.

    MATH  Google Scholar 

  8. K. Ito, Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces, CBMS 47, SIAM (1984).

    Book  Google Scholar 

  9. G. Kallianpur and J. Xiong, Stochastic Differential Equations in Infinite Dimensional Spaces. Lecture Notes, Monograph Series Vol. 26, Institute of Mathematical Statistics (1995).

    Google Scholar 

  10. N. V. Krylov and B. L. Rozovskii, Stochastic Evolution Equations, Itogi Naukt i Tekhniki, Seriya Sovremennye Problemy Matematiki, 14 (1979), 71–146.

    MathSciNet  Google Scholar 

  11. E. Pardoux, Sur des equations aux derives partielles stochastiques non lineaires monotones, C. R. Acad. Sci., 275(2) (1972), A101–A103.

    MathSciNet  Google Scholar 

  12. B. Rajeev, From Tanaka Formula to Ito Formula: Distributions, Tensor Products and Local Times. Séminaire de Probabilites XXXV, LNM 1755 (2001), p. 371.

    Chapter  Google Scholar 

  13. Rajeev B. and S. Thangavelu, Probabilistic Representation of Solutions to the Heat Equation. Proceedings of the Indian Academy of Science (Math. Sci)., 113(3) (2003), 321–332.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Rajeev and S. Thangavelu, Probabilistic Representations of Solutions of the Forward Equations, Potential Analysis, 28 (2008), 139–162.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. W. Stroock and S. R. S. Varadhan, Diffusion Processes with continuous coeffi- cients, I and II, Comm. Pure Appl. Math., XXII (1969), 345–400 and 479–530.

    Article  MathSciNet  Google Scholar 

  16. S. Thangavelu, Lectures on Hermite and Laguerre expansions, Math. Notes 42, Princeton University Press, Princeton (1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rajeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajeev, B. Translation invariant diffusions in the space of tempered distributions. Indian J Pure Appl Math 44, 231–258 (2013). https://doi.org/10.1007/s13226-013-0012-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-013-0012-0

Key words

Navigation