Skip to main content
Log in

Immobilization of copper under an acid leach of colloidal pyrite waste rocks by a fixed-bed column

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Colloidal pyrite waste rocks (CPWR) which are mainly composed of colloidal pyrite and siderite widely deposit in sulfide mines in the middle and lower reaches of the Yangtze River belt, China, especially in Tongling City, Anhui Province, China. In this paper, a fixed-bed column was used to investigate the weathering and oxidation of CPWR and its role in immobilizing low-concentration Cu (10 mg L−1) under weakly acidic leach (pH = 5.0). The experimental results indicated that the breakthrough capacity was around 14.0 mg Cu g−1 CPWR when Cu2+ breakthrough concentration was 0.5 mg L−1. Sequential extraction of Cu and dithionite–citrate–bicarbonate extraction of free iron in the used CPWR after the column breakthrough indicated that Cu removal by CPWR consisted of the following processes: oxidation of pyrite and dissolution of siderite in CPWR, ferrous oxidation, and adsorption of Cu on ferric (hydr)oxides. This study shows the potential application of CPWR as an effective sorbent for the removal of low-concentration Cu from acid mine drainage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bénézeth P, Dandurand JL, Harrichoury JC (2009) Solubility product of siderite (FeCO3) as a function of temperature (25–250 °C). Chem Geol 265:3–12. doi:10.1016/j.chemgeo.2009.03.015

    Article  Google Scholar 

  • Bower J, Savage KS, Weinman B, Barnett MO, Hamilton WP, Harper WF (2008) Immobilization of mercury by pyrite (FeS2). Environ Pollut 156:504–514. doi:10.1016/j.envpol.2008.01.011

    Article  Google Scholar 

  • Caldeira CL, Ciminelli VST, Osseo-Asare K (2010) The role of carbonate ions in pyrite oxidation in aqueous systems. Geochim Cosmochim Acta 74:1777–1789. doi:10.1016/j.gca.2009.12.014

    Article  Google Scholar 

  • Cerón JC, Grande JA, Torre ML, Santisteban M, Valente T (2013) Impact of AMD processes on the water dams of the Iberian Pyrite Belt: overall hydrochemical characterization (Huelva, SW Spain). Water Air Soil Pollut 224:1642–1652. doi:10.1007/s11270-013-1642-x

    Article  Google Scholar 

  • Chandra AP, Gerson AR (2010) The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf Sci Rep 65:293–315. doi:10.1016/j.surfrep.2010.08.003

    Article  Google Scholar 

  • Chandra AP, Puskar L, Simpson DJ, Gerson AR (2012) Copper and xanthate adsorption onto pyrite surfaces: implications for mineral separation through flotation. Int J Miner Process 114–117:16–26. doi:10.1016/j.minpro.2012.08.003

    Article  Google Scholar 

  • Chen TH, Yang Y, Chen D, Li P, Shi YD, Zhu X (2013) The structural evolution of heat-treated colloidal pyrite under inert atmosphere and its application for the purification of Cu(II) ion from wastewater. Environ Eng Manag J 12:1411–1416

    Google Scholar 

  • Demoisson F, Mullet M, Humbert B (2007) Investigation of pyrite oxidation by hexavalent chromium: solution species and surface chemistry. J Colloid Interface Sci 316:531–540. doi:10.1016/j.jcis.2007.08.011

    Article  Google Scholar 

  • Donato PD, Mustin C, Benoit R, Erre R (1993) Spatial distribution of iron and sulphur species on the surface of pyrite. Appl Surf Sci 68:81–93. doi:10.1016/0169-4332(93)90217-Y

    Article  Google Scholar 

  • Equeenuddin SM (2014) Occurrence of alpersite at Malanjkhand copper mine, India. Environ Earth Sci 73:3849–3853. doi:10.1007/s12665-014-3668-9

    Article  Google Scholar 

  • Futalan CM, Kan C-C, Dalida ML, Pascua C, Wan M-W (2011) Fixed-bed column studies on the removal of copper using chitosan immobilized on bentonite. Carbohydr Polym 83:697–704. doi:10.1016/j.carbpol.2010.08.043

    Article  Google Scholar 

  • Grande JA, Santisteban M, de la Torre ML, Valente T, Perez-Ostale E (2013) Characterisation of AMD pollution in the reservoirs of the Iberian Pyrite Belt. Mine Water Environ 32:321–330. doi:10.1007/s10230-013-0236-6

    Article  Google Scholar 

  • Guo H, Ren Y, Liu Q, Zhao K, Li Y (2013) Enhancement of arsenic adsorption during mineral transformation from siderite to goethite: mechanism and application. Environ Sci Technol 47:1009–1016. doi:10.1021/es303503m

    Article  Google Scholar 

  • Han R, Zou W, Li H, Li Y, Shi J (2006) Copper(II) and lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite. J Hazard Mater 137:934–942. doi:10.1016/j.jhazmat.2006.03.016

    Article  Google Scholar 

  • Integrated Wastewater Discharge Standard (1996) State Bureau of Technology Supervision. http://kjs.mep.gov.cn/hjbhbz/bzwb/shjbh/swrwpfbz/199801/W020061027521858212955.pdf

  • Jeong HY, Han Y-S, Park SW, Hayes KF (2010a) Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization. Geochim Cosmochim Acta 74:3182–3198. doi:10.1016/j.gca.2010.03.012

    Article  Google Scholar 

  • Jeong HY, Sun K, Hayes KF (2010b) Microscopic and spectroscopic characterization of Hg(II) immobilization by mackinawite (FeS). Environ Sci Technol 44:7476–7483

    Article  Google Scholar 

  • Kelly WC, Turneaure FS (1970) Mineralogy, paragenesis and geothermometry of the tin and tungsten deposits of the eastern Andes. Bolivia Econ Geol 65:609–680

    Article  Google Scholar 

  • Lin Y-T, Huang C-P (2008) Reduction of chromium(VI) by pyrite in dilute aqueous solutions. Sep Purif Technol 63:191–199. doi:10.1016/j.seppur.2008.05.001

    Article  Google Scholar 

  • Malakooti SJ, Tonkaboni SZS, Noaparast M, Ardejani FD, Naseh R (2013) Characterisation of the Sarcheshmeh copper mine tailings, Kerman province, southeast of Iran. Environ Earth Sci 71:2267–2291. doi:10.1007/s12665-013-2630-6

    Article  Google Scholar 

  • Martín-Crespo T, De Ignacio-San José C, Gómez-Ortiz D, Martín-Velázquez S, Lillo-Ramos J (2009) Monitoring study of the mine pond reclamation of Mina Concepción, Iberian Pyrite Belt (Spain). Environ Earth Sci 59:1275–1284. doi:10.1007/s12665-009-0115-4

    Article  Google Scholar 

  • Martínez CE, McBride MB (1998) Solubility of Cd2+, Cu2+, Pb2+, and Zn2+ in aged coprecipitates with amorphous iron hydroxides. Environ Sci Technol 32:743–748. doi:10.1021/es970262+

    Article  Google Scholar 

  • Mehra OP, Jackson ML (1960) Iron oxides removed from soils and clays by dithionote–citrate system buffered with sodium bicarbonate. Clays Clay Miner 7:317–327

    Article  Google Scholar 

  • Moses CO, Herman JS (1991) Pyrite oxidation at circumneutral pH. Geochim Cosmochim Acta 55:471–482. doi:10.1016/0016-7037(91)90005-P

    Article  Google Scholar 

  • Moses CO, KirkNordstrom D, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta 51:1561–1571

    Article  Google Scholar 

  • Raven KP, Jain A, Loeppert RH (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol 32:344–349

    Article  Google Scholar 

  • Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880. doi:10.1016/s0016-7037(02)01165-1

    Article  Google Scholar 

  • Romero FM, Nunez L, Gutierrez ME, Armienta MA, Ceniceros-Gomez AE (2011) Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area. Mexico Arch Environ Contam Toxicol 60:191–203. doi:10.1007/s00244-010-9544-z

    Article  Google Scholar 

  • Sahinkaya E, Gunes FM, Ucar D, Kaksonen AH (2011) Sulfidogenic fluidized bed treatment of real acid mine drainage water. Bioresour Technol 102:683–689. doi:10.1016/j.biortech.2010.08.042

    Article  Google Scholar 

  • Sahoo PK, Tripathy S, Panigrahi MK, Equeenuddin SM (2013) Inhibition of acid mine drainage from a pyrite-rich mining waste using industrial by-products: role of neo-formed phases. Water Air Soil Pollut 224:1757–1767. doi:10.1007/s11270-013-1757-0

    Article  Google Scholar 

  • Sainz A, Ruiz F (2006) Influence of the very polluted inputs of the Tinto-Odiel system on the adjacent littoral sediments of southwestern spain: a statistical approach. Chemosphere 62:1612–1622. doi:10.1016/j.chemosphere.2005.06.045

    Article  Google Scholar 

  • Shokri BJ, Ramazi H, Ardejani FD, Moradzadeh A (2013) A statistical model to relate pyrite oxidation and oxygen transport within a coal waste pile: case study, Alborz Sharghi, northeast of Iran. Environ Earth Sci 71:4693–4702. doi:10.1007/s12665-013-2859-0

    Article  Google Scholar 

  • Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781

    Article  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  Google Scholar 

  • Todd EC, Sherman DM, Purton JA (2003) Surface oxidation of pyrite under ambient atmospheric and aqueous (pH = 2 to 10) conditions: electronic structure and mineralogy from X-ray absorption spectroscopy. Geochim Cosmochim Acta 67:881–893. doi:10.1016/S0016-7037(02)00957-2

    Article  Google Scholar 

  • Wilkie JA, Hering JG (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf A 107:97–110. doi:10.1016/0927-7757(95)03368-8

    Article  Google Scholar 

  • World Health Organization (2005) Nickel in drinking water: background document for development of WHO. World Health Organization. http://www.who.int/water_sanitation_health/gdwqrevision/nickel2005.pdf

  • Xu XC, Xie Q, Chen F, Wang J, Wu W (2008) Acid mine drainage and heavy metal pollution from solid waste in the Tongling Mines. China Acta Geologia Sinica 82:146–153

    Google Scholar 

  • Yang Y, Chen T, Li P, Liu H, Xie J, Xie Q, Zhan X (2014) Removal and recovery of Cu and Pb from single-metal and Cu–Pb–Cd–Zn multimetal solutions by modified pyrite: fixed-bed columns. Ind Eng Chem Res 53:18180–18188. doi:10.1021/ie503828f

    Article  Google Scholar 

  • Yousefi S, Ardejani FD, Ziaii M, Abedi A, Zadeh EE (2014) Investigating the origin and geochemical behaviour of toxic elements within the waste dumps using statistical analyses: a case study at waste dumps of Sarcheshmeh copper mine, SE of Iran. Environ Earth Sci 73:1555–1572. doi:10.1007/s12665-014-3507-z

    Article  Google Scholar 

  • Zhang M (2011) Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chem Eng J 172:361–368. doi:10.1016/j.cej.2011.06.017

    Article  Google Scholar 

  • Zhou T, Yuan F, Yue S, Zhao Y (2000) Two series of copper-gold deposits in the middle and lower reaches of the Yangtze River area (MLYRA) and the hydrogen, oxygen, sulfur and lead isotopes of their ore-forming hydrothermal systems. Sci China Ser D Earth Sci 43:208–218. doi:10.1007/bf02911946

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Natural Science Foundation of China (No. 41130206 and 41402029). Yan Yang is grateful for the funding provided by the China Scholarship Council (No. 201306690001) and European Cooperation in Science and Technology (COST Action Programs 1205 and 1302).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Yang or Tianhu Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chen, T., Li, P. et al. Immobilization of copper under an acid leach of colloidal pyrite waste rocks by a fixed-bed column. Environ Earth Sci 75, 205 (2016). https://doi.org/10.1007/s12665-015-4991-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4991-5

Keywords

Navigation