Skip to main content
Log in

Metallothionein Treatment Attenuates Microglial Activation and Expression of Neurotoxic Quinolinic Acid Following Traumatic Brain Injury

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The kynurenine pathway has been implicated as a major component of the neuroinflammatory response to brain injury and neurodegeneration. We found that the neurotoxic kynurenine pathway intermediate quinolinic acid (QUIN) is rapidly expressed, within 24 h, by reactive microglia following traumatic injury to the rodent neocortex. Furthermore, administration of the astrocytic protein metallothionein attenuated this neuroinflammatory response by reducing microglial activation (by approximately 30%) and QUIN expression. The suppressive effect of MT was confirmed upon cultured cortical microglia, with 1 μg/ml MT almost completely blocking interferon–gamma induced activation of microglia and QUIN expression. These results demonstrate the neuroimmunomodulatory properties of MT, which may have therapeutic applications for the treatment of traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambjørn M, Asmussen JW, Lindstam M, Gotfryd K, Jacobsen C, Kiselyov VV, Moestrup SK, Penkowa M, Bock E, Berezin V (2008) Metallothionein and a peptide modelled after metallothionein, EmtinB, induce neuronal differentiation and survival through binding to receptors of the low-density lipoprotein receptor family. J Neurochem 104(1):21–37

    PubMed  Google Scholar 

  • Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375

    Article  PubMed  CAS  Google Scholar 

  • Christofides J, Bridel M, Egerton M, Mackay GM, Forrest CM, Stoy N, Darlington LG, Stone TW (2006) Blood 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and melatonin levels in patients with either Huntington’s disease or chronic brain injury. J Neurochem 97(4):1078–1088

    Article  PubMed  CAS  Google Scholar 

  • Chung RS, Vickers JC, Chuah MI, West AK (2003) Metallothionein-IIA promotes initial neurite elongation and post injury reactive neurite growth and facilitates healing after focal cortical brain injury. J Neurosci 23(8):3336–3342

    PubMed  CAS  Google Scholar 

  • Chung RS, Woodhouse A, Fung S, Dickson TC, West AK, Vickers JC, Chuah MI (2004) Olfactory ensheathing cells promote neurite sprouting of injured axons in vitro by direct cellular contact and secretion of soluble factors. Cell Mol Life Sci 61(10):1238–1245

    Article  PubMed  CAS  Google Scholar 

  • Chung RS, Fung SJ, Leung YK, Walker AK, McCormack GH, Chuah MI, Vickers JC, West AK (2007) Metallothionein expression by NG2 glial cells following CNS injury. Cell Mol Life Sci 64(19–20):2716–2722

    Article  PubMed  CAS  Google Scholar 

  • Chung RS, Hidalgo J, West AK (2008a) New insight into the molecular pathways of metallothionein-mediated neuroprotection and regeneration. J Neurochem 104(1):14–20

    PubMed  CAS  Google Scholar 

  • Chung RS, Penkowa M, Dittmann J, King CE, Bartlett C, Asmussen JW, Hidalgo J, Carrasco J, Leung YK, Walker AK, Fung SJ, Dunlop SA, Fitzgerald M, Beazley LD, Chuah MI, Vickers JC, West AK (2008b) Redefining the role of metallothionein within the injured brain: extracellular metallothioneins play an important role in the astrocyte-neuron response to injury. J Biol Chem 283(22):15349–15358

    Article  PubMed  CAS  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    Article  PubMed  CAS  Google Scholar 

  • Erickson JC, Sewell AK, Jensen LT, Winge DR, Palmiter RD (1994) Enhanced neurotrophic activity in Alzheimer’s disease cortex is not associated with down-regulation of metallothionein-III (GIF). Brain Res 649(1–2):297–304

    Article  PubMed  CAS  Google Scholar 

  • Floden AM, Combs CK (2006) Beta-amyloid stimulates murine postnatal and adult microglia cultures in a unique manner. J Neurosci 26(17):4644–4648

    Article  PubMed  CAS  Google Scholar 

  • Foster AC, Vezzani A, French ED, Schwarcz R (1984) Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett 48(3):273–278

    Article  PubMed  CAS  Google Scholar 

  • Garção P, Oliveira CR, Agostinho P (2006) Comparative study of microglia activation induced by amyloid-beta and prion peptides: role in neurodegeneration. J Neurosci Res 84(1):182–193

    Article  PubMed  CAS  Google Scholar 

  • Giralt M, Penkowa M, Lago N, Molinero A, Hidalgo J (2002) Metallothionein-1 + 2 protect the CNS after a focal brain injury. Exp Neurol 173(1):114–128

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 78(4):842–853

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112

    PubMed  CAS  Google Scholar 

  • Guillemin GJ, Brew BJ, Noonan CE, Takikawa O, Cullen KM (2005) Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol 31(4):395–404

    Article  PubMed  CAS  Google Scholar 

  • Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27(47):12884–12892

    Article  PubMed  CAS  Google Scholar 

  • Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L (2005) Kynurenine metabolism in multiple sclerosis. Acta Neurol Scand 112(2):93–96

    Article  PubMed  CAS  Google Scholar 

  • Heyes MP (1996) The kynurenine pathway and neurologic disease. Therapeutic strategies. Adv Exp Med Biol 398:125–129

    PubMed  CAS  Google Scholar 

  • Hidalgo J, Aschner M, Zatta P, Vasák M (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55(2):133–145

    Google Scholar 

  • Jhamandas KH, Boegman RJ, Beninger RJ, Miranda AF, Lipic KA (2000) Excitotoxicity of quinolinic acid: modulation by endogenous antagonists. Neurotox Res 2(2–3):139–155

    Article  PubMed  CAS  Google Scholar 

  • Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA (2008) Zinc triggers microglial activation. J Neurosci 28(22):5827–5835

    Article  PubMed  CAS  Google Scholar 

  • Kukacka J, Vajtr D, Huska D, Průsa R, Houstava L, Samal F, Diopan V, Kotaska K, Kizek R (2006) Blood metallothionein, neuron specific enolase, and protein S100B in patients with traumatic brain injury. Neuro Endocrinol Lett 27(2):116–120

    PubMed  CAS  Google Scholar 

  • Laporte V, Lombard Y, Levy-Benezra R, Tranchant C, Poindron P, Warter JM (2004) Uptake of Abeta 1-40- and Abeta 1-42-coated yeast by microglial cells: a role for LRP. J Leukoc Biol 76(2):451–461

    Article  PubMed  CAS  Google Scholar 

  • Mackay GM, Forrest CM, Stoy N, Christofides J, Egerton M, Stone TW, Darlington LG (2006) Tryptophan metabolism and oxidative stress in patients with chronic brain injury. Eur J Neurol 13(1):30–42

    Article  PubMed  CAS  Google Scholar 

  • Penkowa M, Carrasco J, Giralt M, Moos T, Hidalgo J (1999) CNS wound healing is severely depressed in metallothionein I- and II-deficient mice. J Neurosci 19(7):2535–2545

    PubMed  CAS  Google Scholar 

  • Penkowa M, Giralt M, Camats J, Hidalgo J (2002) Metallothionein 1 + 2 protect the CNS during neuroglial degeneration induced by 6-aminonicotinamide. J Comp Neurol 444(2):174–189

    Article  PubMed  CAS  Google Scholar 

  • Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH, Sobel RA, Selley ML, Steinman L (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310(5749):850–855

    Google Scholar 

  • Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA (2006) Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 8(20):1–27

    Article  PubMed  Google Scholar 

  • Smythe GA, Braga O, Brew BJ, Grant RS, Guillemin GJ, Kerr SJ, Walker DW (2002) Concurrent quantification of quinolinic, picolinic, and nicotinic acids using electron-capture negative-ion gas chromatography–mass spectrometry. Anal Biochem 301(1):21–26

    Article  PubMed  CAS  Google Scholar 

  • West AK, Chuah MI, Vickers JC, Chung RS (2004) Protective role of metallothioneins in the injured mammalian brain. Rev Neurosci 15(3):157–166

    PubMed  CAS  Google Scholar 

  • Yin X, Knecht DA, Lynes MA (2005) Metallothionein mediates leukocyte chemotaxis. BMC Immunol 6:21

    Article  PubMed  CAS  Google Scholar 

  • Youn J, Lynes MA (1999) Metallothionein-induced suppression of cytotoxic T lymphocyte function: an important immunoregulatory control. Toxicol Sci 52(2):199–208

    Article  PubMed  CAS  Google Scholar 

  • Youn J, Borghesi LA, Olson EA, Lynes MA (1995) Immunomodulatory activities of extracellular metallothionein. II. Effects on macrophage functions. J Toxicol Environ Health 45(4):397–413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Australian Research Council (DP0556630; LP0774820) and National Health and Medical Research Council (ID# 490025, 544913). RSC holds an Australian Research Council ARF Fellowship (DP0984673).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. S. Chung or G. J. Guillemin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, R.S., Leung, Y.K., Butler, C.W. et al. Metallothionein Treatment Attenuates Microglial Activation and Expression of Neurotoxic Quinolinic Acid Following Traumatic Brain Injury. Neurotox Res 15, 381–389 (2009). https://doi.org/10.1007/s12640-009-9044-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9044-y

Keywords

Navigation