Skip to main content
Log in

Evidence of Antibacterial Activities in Peptide Fractions Originating from Snow Crab (Chionoecetes opilio) By-Products

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Antibacterial peptide fractions generated via proteolytic processing of snow crab by-products exhibited activity against Gram-negative and Gram-positive bacteria. Among the bacterial strains tested, peptide fractions demonstrated inhibitory activity against the Gram-negative bacteria such as Aeromonas caviae, Aeromonas hydrophila, Campylobacter jejuni, Listonella anguillarum, Morganella morganii, Shewanella putrefasciens, Vibrio parahaemolyticus and Vibrio vulnificus and against a few Gram-positive bacteria such as Listeria monocytogenes, Staphylococcus epidermidis and Streptococcus agalactiae. The principal bioactive peptide fraction was comprised mainly of proteins and minerals (74.3 and 15.5%, respectively). Lipids were not detected. The amino acid content revealed that arginine (4.6%), glutamic acid (5.3%) and tyrosine (4.8%) residues were represented in the highest composition in the antibacterial peptide fraction. The optimal inhibitory activity was observed at alkaline pH. The V. vulnificus strain, most sensitive to the peptide fraction, was used to develop purification methods. The most promising chromatography resins selected for purification, in order to isolate peptides of interest and to carry out their detailed biochemical characterization, were the SP-Sepharose™ Fast Flow cation exchanger and the Phenyl Sepharose™ High Performance hydrophobic interaction media. The partially purified antibacterial peptide fraction was analyzed for minimum inhibitory concentration (MIC) determination, and the value obtained was 25 μg ml−1. Following mass spectrometry analysis, the active peptide fraction seems to be a complex of molecules comprised of several amino acids and other organic compounds. In addition, copper was the main metal found in the active peptide fraction. Results indicate the production of antibacterial molecules from crustacean by-products that support further applications for high-value bioproducts in several areas such as food and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.O.A.C (2002) Official methods of analysis of the Association of Official Analytical Chemists. 17th edn. In: Horwitz W (ed) Association of official analytical chemists. Washington, Methods no 950.46 and 938.08 and 988.05

  2. Bartlett TC, Cuthbertson BJ, Shepard EF, Chapman RW, Gross PS, Warr GW (2002) Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of Penaeid shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Mar Biotechnol 4:278–293

    Article  CAS  Google Scholar 

  3. Battison AL, Summerfield R, Patrzykat A (2008) Isolation and characterization of two antimicrobial peptides from haemocytes of the American lobster Homarus americanus. Fish Shellfish Immunol. 25:181–187

    Article  CAS  Google Scholar 

  4. Beaulieu L, Thibodeau J, Bryl P, Carbonneau M-É (2009) Characterization of enzymatic hydrolysated snow crab (Chionoecetes opilio) by-product fractions: a source of high-valued biomolecules. Biores Technol 100:3332–3342

    Article  CAS  Google Scholar 

  5. Beltramini M, Colangelo N, Giomi F, Bubacco L, Di Muro P, Hellmann N, Jeanicke E, Decker H (2005) Quaternary structure and functional properties of Penaeus monodon hemocyanin. FEBS J 272:2060–2075

    Article  CAS  Google Scholar 

  6. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917

    CAS  Google Scholar 

  7. Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215

    Article  CAS  Google Scholar 

  8. Brogden KM, Ackermann M, McCray PB, Tack BF (2003) Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 22:465–478

    Article  CAS  Google Scholar 

  9. Brogden KA, De Lucca AJ, Bland J, Elliot S (1996) Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc Natl Acad Sci USA 93:412–416

    Article  CAS  Google Scholar 

  10. Cancilla MT, Wong AM, Voss LR, Lebrilla CB (1999) Fragmentation reactions in the mass spectrometry analysis of neutral oligosaccharides. Anal Chem 71:3206–3218

    Article  CAS  Google Scholar 

  11. Destoumieux D, Bulet P, Loew D, Dorsselaer AV, Rodriguez J, Bachère E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406

    Article  CAS  Google Scholar 

  12. Destoumieux-Garzon D, Saulnier D, Garnier J, Jouffrey C, Bulet P, Bachère E (2001) Antifungal peptides are generated from the C-terminus of shrimp hemocyanin in response to microbial challenge. J Biol Chem 276:47070–47077

    Article  CAS  Google Scholar 

  13. Elsbach P, Weiss J (1998) Role of the bactericidal/permeability-increasing protein in host defence. Curr Opin Immunol 10:45–49

    Article  CAS  Google Scholar 

  14. Faghri MA, Pennington CL, Cronholm LS, Atlas RM (1984) Bacteria associated with crabs from cold waters with emphasis on the occurrence of potential human pathogens. Appl Env Microbiol 47:1054–1061

    CAS  Google Scholar 

  15. Gross PS, Bartlett TC, Browdy CL, Chapman RW, Warr GW (2001) Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific white shrimp, Litopenaeus vannamei, and the Atlantic white shrimp, L. setiferus. Dev Comp Immunol 25:565–577

    Article  CAS  Google Scholar 

  16. Hancock REW, Brown KL, Mookherjee N (2006) Host defense peptides from invertebrates—emerging antimicrobial strategies. Immunobiol 211:315–322

    Article  CAS  Google Scholar 

  17. Haug T (2004) Marine bioprospecting: marine invertebrates and algae—a potential source for the discovery of novel antibiotics. Doctor scientiarum thesis, University of Tromso, Norway

  18. Haug T, Kjuul AK, Stensvag K, Sandsdalen E, Styrvold OB (2002) Antibacterial activity in four marine crustaceans decapods. Fish Shellfish Immunol 12:371–385

    Article  Google Scholar 

  19. Herbinière J, Braquart-Varnier C, Grève P, Strub J-M, Frère J, Dorsselaer AV, Martin G (2005) Armadillidin: a novel glycine-rich antibacterial peptide directed against gram-positive bacteria in the woodlouse Armadillidium vulgare (terrestrial isopod, crustacean). Dev Comp Immunol 29:489–499

    Article  Google Scholar 

  20. Himelbloom B, Nilsson L, Gram L (2001) Factors affecting production of an antilisterial bacteriocin by Carnobacterium piscicola strain A9b in laboratory media and model fish systems. J Appl Microbiol 91:506–513

    Article  CAS  Google Scholar 

  21. Idakieva K, Stoeva S, Voelter W, Gielens C (2004) Glycosylation of Rapana thomsiana hemocyanin. Comparison with other prosobranch (gastropod) hemocyanins. Comp Biochem Physiol Part B 138:221–228

    Article  Google Scholar 

  22. Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrates animals. J Biochem Mol Biol 38:128–150

    CAS  Google Scholar 

  23. Khoo L, Robinette DW, Noga EJ (1999) Callinectin, an antibacterial peptide from blue crab, Callinectes sapidus, hemocytes. Mar Biotechnol 1:44–51

    Article  CAS  Google Scholar 

  24. Lee SY, Lee BL, Söderhäll K (2003) Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 278:7927–7933

    Article  CAS  Google Scholar 

  25. Leitner A, Emmert J, Boerner K, Lindner W (2007) Influence of solvent additive composition on chromatographic separation and sodium adduct formation of peptides in HPLC-ESI MS. Chromatographia 65:649–653

    Article  CAS  Google Scholar 

  26. Liu Z, Dong S, Xu J, Zeng M, Song H, Zhao Y (2008) Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control 19:231–235

    Article  Google Scholar 

  27. Marr AK, Gooderham WJ, Hancock REW (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472

    Article  CAS  Google Scholar 

  28. Marshall SH, Arenas G (2003) Antimicrobial peptides: a natural alternative to chemical antibiotics and a potential for applied biotechnology. Elect J Biotechnol 6:271–284

    Google Scholar 

  29. Noga EJ, Smolowitz R, Khoo LH (2000) Pathology of shell disease in the blue crab, Callinectes sapidus Rathbun, (Decapoda: Portunidae). J Fish Dis 23:389–399

    Article  Google Scholar 

  30. Patat SA, Carnegie RB, Kingsbury C, Gross PS, Chapman R, Schev KL (2004) Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur J Biochem 271:4825–4833

    Article  CAS  Google Scholar 

  31. Patrzykat A, Douglas SE (2003) Gone gene fishing: how to catch novel marine antimicrobials. Trends Biotechnol 21:362–369

    Article  CAS  Google Scholar 

  32. Powers JPS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides 24:1681–1691

    Article  CAS  Google Scholar 

  33. Relf JM, Chisholm JRS, Kemp GD, Smith VJ (1999) Purification and characterization of a cystein-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 264:350–357

    Article  CAS  Google Scholar 

  34. Rojtinnakorn J, Hirono I, Itami T, Takahashi Y, Aoki T (2002) Gene expression in haemocytes of kuruma prawn, Penaeus japonicus, in response to infection with WSSV by EST approach. Fish Shellfish Immun 13:69–83

    Article  CAS  Google Scholar 

  35. Schnapp D, Kemp GD, Smith VJ (1996) Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 240:532–539

    Article  CAS  Google Scholar 

  36. Smith VJ, Chisholm JRS (2001) Antimicrobial proteins in crustaceans. Adv Exp Med Biol 484:95–112

    CAS  Google Scholar 

  37. Stensvag K, Haug T, Sperstad SV, Rekdal O, Indrevoll B, Styrvold OB (2008) Arasin 1, a proline-arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Dev Comp Immunol 32:275–285

    Article  CAS  Google Scholar 

  38. Supungul P, Klinbunga S, Pichyangkura R, Jitrapakdee S, Hirono I, Aoki T, Tassanakajon A (2002) Identification of immune-related genes in hemocytes of black tiger shrimp (Penaeus monodon). Mar Biotechnol 4:487–494

    Article  CAS  Google Scholar 

  39. Tincu JA, Taylor SW (2004) Antimicrobial peptides from marine invertebrates. Antimicrob Agents Ch 48:3645–3654

    Article  CAS  Google Scholar 

  40. Tome E, Gibbs PA, Teixeira PC (2008) Growth control of Listeria innocua 2030c on vacuum-packaged cold-smoked salmon by lactic acid bacteria. Int J Food Microbiol 121:285–294

    Article  CAS  Google Scholar 

  41. Wang KJ, Huang WS, Yang M, Chen HY, Bo J, Li SJ, Wang GZ (2007) A male-specific expression gene, encodes a novel anionic antimicrobial peptide, scygonadin, in Scylla serrata. Mol Immunol 44:1961–1968

    Article  CAS  Google Scholar 

  42. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank E. Gagnon et Fils Lté (Grande-Rivière, Québec, Canada) for providing the snow crab by-products, Mr. Piotr Bryl, Mrs. Marie-Élise Carbonneau, Mrs. Nadine Renaud, Mr. Michel Parisé and Mrs. Diane Ouellet (Aquatic Products Technology Centre, Gaspé, Québec, Canada) for their scientific input and technical expertise. We thank Mrs. Christine Barthe (MAPAQ) for providing several bacterial strains. Thanks also to Mrs Maria Pacheco-Oliver (Biotechnology Research Institute, National Research Council, BRI-NRC) for her presubmission review of this paper. Lucie Beaulieu would like to thank the Innovation and Technologies Directorate of Ministère de l’agriculture, des pêcheries et de l’alimentation (MAPAQ, Québec, Canada) and Ministère du développement économique, de l’innovation et de l’exportation (MDEIE, Québec, Canada) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Beaulieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaulieu, L., Thibodeau, J., Desbiens, M. et al. Evidence of Antibacterial Activities in Peptide Fractions Originating from Snow Crab (Chionoecetes opilio) By-Products. Probiotics & Antimicro. Prot. 2, 197–209 (2010). https://doi.org/10.1007/s12602-010-9043-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-010-9043-6

Keywords

Navigation