Skip to main content
Log in

Low-temperature synthesis and characterization of Ti2AlC/TiAl in situ composites via a reaction Hot-Pressing Process in the Ti3AlC2-Ti-Al system

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Ti2AlC/TiAl in situ composites were fabricated via a reaction Hot-Pressing Process using Ti3AlC2, Ti, and Al powders as initial materials. The effect of Ti2AlC content on the phases and microstructure of the as-sintered composites was investigated by XRD and SEM. The mechanical properties such as Vickers hardness, flexural strength and fracture toughness of the as-sintered composites were also tested. The products consisted of Ti2AlC, γ-TiAl and β2-Ti3Al as the major phases. Ti2AlC reinforcements were mainly distributed in the grain boundaries, resulting in obvious γ+β2 grain refinement. With increasing Ti3AlC2 content (up to 5 wt%), the Vickers hardness, flexural strength and fracture toughness of the as-sintered composite reached the maximum values of 3.7 GPa, 651.5 MPa, and 10.89 MPa·m1/2, respectively. Analysis of fracture surface and crack propagation paths indicated that crack deflection and crack bridging of the in situ precipitated Ti2AlC phases obtained by decomposing Ti3AlC2 were the main reasons for the observed composite toughening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. J. Bertin and R. M. Cummings, Prog. Aerosp. Sci. 39, 511 (2003).

    Article  Google Scholar 

  2. K. Kothari, R. Radhakrishnan, and N. M. Wereley, Prog. Aerosp. Sci. 55, 1 (2012).

    Article  Google Scholar 

  3. F. H. Fores, C. Suryanarayana, and D. Eliezer, J. Mater. Sci. 27, 5113 (1992).

    Article  Google Scholar 

  4. T. T. Ai, Chin. J. Aeronaut. 21, 559 (2008).

    Article  Google Scholar 

  5. M. Yamaguchi, H. Inui, and K. Ito, Acta Mater. 48, 307 (2000).

    Article  Google Scholar 

  6. M. H. Loretto, A. B. Godfrey, D. Hu, P. A. Blenkinsop, I. P. Jones, and T. T. Cheng, Intermetallics 6, 663 (1998).

    Article  Google Scholar 

  7. S. L. Kample, P. Sadler, L. Christodoulou, and D. E. Larsen, Metall. Mater. Trans. A 25, 2181 (1994).

    Article  Google Scholar 

  8. A. Bartels, H. Kestler, and H. Clemens. Mater. Sci. Eng. A 329–331, 153 (2002).

    Article  Google Scholar 

  9. F. Yang, F. T. Kong, Y. Y. Chen, and S. L. Xiao, J. Alloys Compd. 496, 462 (2010).

    Article  Google Scholar 

  10. C. C. Koch, Mater. Sci. Eng. A 244, 39 (1998).

    Article  Google Scholar 

  11. R. Ramaseshan, A. Kakitsuji, S. K. Seshadri, N. G. Nair, H. Mabuchi, H. Tsuda, T. Matsui, and K. Morii, Intermetallics 7, 571 (1999).

    Article  Google Scholar 

  12. K. P. Rao and Y. J., Mater. Sci. Eng. A 277, 46 (2000).

    Article  Google Scholar 

  13. D. E. Alman, Intermetallics 13, 572 (2005).

    Article  Google Scholar 

  14. T. T. Ai, F. Wang, and X. M. Feng. Sci. China Technol. Sc. 52, 1273 (2009).

    Article  Google Scholar 

  15. C. L. Yeh and S. H. Su, J. Alloys Compd. 407, 150 (2006).

    Article  Google Scholar 

  16. S. L. Shu, B. Xing, F. Qiu, S. B. Jin, and Q. C. Jiang, Mater. Sci. Eng. A 560, 596 (2013).

    Article  Google Scholar 

  17. S. L. Shu, F. Qiu, Y. Y. Lin, Y. W. Wang, J. G. Wang, and Q. C. Jiang, J. Alloys Compd. 551, 88 (2013).

    Article  Google Scholar 

  18. J. Wang, N. Q. Zhao, P. Nash, E. Z. Liu, C. N. He, C. S. Shi, and J. J. Li, J. Alloys Compd. 578, 481 (2013).

    Article  Google Scholar 

  19. M. W. Barsoum, Prog. Solid State Chem. 28, 201 (2000).

    Article  Google Scholar 

  20. M. W. Barsoum, M. Ali, and T. El-raghy. Metall. Mater. Trans. A 31, 1857 (2000).

    Article  Google Scholar 

  21. S. R. Kulkarni and A. V. Datye Kuang-His Wu, J. Alloys Compd. 490, 155 (2010).

    Article  Google Scholar 

  22. H. Mabuchi, K. Harada, H. Tsuda, and Y. Nakayama, ISIJ Int. 31, 1272 (1991).

    Article  Google Scholar 

  23. K. P. Rao and J. B. Zhou, Mater. Sci. Eng. A 356, 208 (2003).

    Article  Google Scholar 

  24. M. L. Vanmeter, S. L. Kample, and L. Christodoulou, Scr. Mater. 34, 1251 (1996).

    Article  Google Scholar 

  25. A. Couret, G. Molénat, J. Galy, and M. Thomas. Intermetallics 16, 1134 (2008).

    Article  Google Scholar 

  26. N. Forouzanmehr and F. Karimzadeh, M. H., J. Alloys Compd. 478, 257 (2009).

    Article  Google Scholar 

  27. Y. H. Wang, J. P. Lin, Y. H. He, Y. L. Wang, and G. L. Chen, J. Alloys Compd. 468, 505 (2009).

    Article  Google Scholar 

  28. S. L., Shu, F. Qiu, S. B. Jin, J. B. Lu, and Q. C. Jiang, Mater. Design. 32, 5061 (2011).

    Article  Google Scholar 

  29. T. Ai, F. Wang, Y. Zhang, P. Jiang, and X. Yuan, Adv. Appl. Ceram. 112, 424 (2013).

    Article  Google Scholar 

  30. X. W. Xu, C. K. Fu, Y. X. Li, J. Q. Zhu, and B. C. Mei, Trans. Nonferrous Met. Soc. China 16, s490 (2006).

    Article  Google Scholar 

  31. S. L. Shu, F. Qiu, S. J. Lü, S. B. Jin, and Q. C. Jiang, Mater. Sci. Eng. A 539, 344 (2012).

    Article  Google Scholar 

  32. T. T. Ai, F. Wang, X. M. Feng, and M. M. Ruan, Ceram. Int. 40, 9947 (2014).

    Article  Google Scholar 

  33. C. H. Yang, F. Wang, T. T. Ai, and J. F. Zhu. Ceram. Int. 40, 8165 (2014).

    Article  Google Scholar 

  34. N. V. Tzenov and M. W. Barsoum, J. Am. Ceram. Soc. 83, 825 (2000).

    Article  Google Scholar 

  35. L. M. Peng, Z. Li, H. Li, J. H. Wang, and M. Gong, J. Alloys Compd. 414, 100 (2006).

    Article  Google Scholar 

  36. N. Travitzky, I. Gotman, and N. Claussen, Mater. Lett. 57, 3422 (2003).

    Article  Google Scholar 

  37. Y. Li, Y. L. Yue, H. T. Zhang, and M. Wen, Rev. Adv. Mater. Sci. 33, 148 (2013).

    Google Scholar 

  38. C. Poletti, M. Balog, T. Schubert, V. Liedtke, and C. Edtmaier, Comp. Sci. Technol. 68, 2171 (2008).

    Article  Google Scholar 

  39. X. H. Wang and Y. C. Zhou, Acta Mater. 50, 3141 (2002).

    Google Scholar 

  40. W. K. Zhang, L. Z. Gao, Y. Lei, B. J. Yang, J. Li, L. Xiao, and Y. S. Yin, Mater. Sci. Eng. A 527, 7436 (2010).

    Article  Google Scholar 

  41. L. Y. Xiang, F. Wang, J. F. Zhu, and X. F. Wang, Mater. Sci. Eng. A 528, 3337 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Ai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, T., Yu, N., Feng, X. et al. Low-temperature synthesis and characterization of Ti2AlC/TiAl in situ composites via a reaction Hot-Pressing Process in the Ti3AlC2-Ti-Al system. Met. Mater. Int. 21, 179–184 (2015). https://doi.org/10.1007/s12540-015-1022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-1022-8

Keywords

Navigation