Skip to main content
Log in

Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Reperfused myocardium post-acute myocardial infarction (AMI) may have altered metabolism with implications for therapy response and function recovery. We explored glucose utilization and the “reverse mismatch” (RMM) pattern (decreased F-18-fluorodeoxyglucose (FDG) uptake relative to perfusion) in patients who underwent mechanical reperfusion with percutaneous coronary intervention (PCI) for AMI.

Methods and Results

Thirty-one patients with anterior wall AMI treated with acute reperfusion, with left ventricular ejection fraction ≤45%, underwent rest rubidium-82 (Rb-82) and FDG PET 2-10 days post-AMI. Resting echocardiograms were used to assess wall motion abnormalities. Significant RMM occurred in 15 (48%) patients and was associated with a shorter time to PCI of 2.9 hours (2.2, 13.3 hours) compared to patients without significant RMM: 11.4 hours (3.9, 22.4 hours) (P = .03). Within the peri-infarct regions, segments with significant RMM were more likely to have wall motion abnormalities (OR = 2.3 (1.1, 4.7), P = .02) compared to segments without significant RMM.

Conclusions

RMM is a common pattern on perfusion/FDG PET during the sub-acute phase following reperfusion of AMI and is associated with shorter times to PCI. Within the peri-infarct region, RMM occurs frequently and is more often associated with wall motion abnormalities than segments without RMM. Whether this represents a myocardial metabolic shift during the sub-acute phase of recovery warrants further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Antman EM, Hand M, Armstrong PW, et al. 2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST-elevation myocardial infarction: A report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation 2008;117:296-329.

    Article  PubMed  Google Scholar 

  2. Schluter KD, Maxeiner H, Wenzel S. Mechanisms that regulate homing function of progenitor cells in myocardial infarction. Minerva Cardioangiol 2009;57:203-17.

    PubMed  CAS  Google Scholar 

  3. Ince H, Nienaber CA. Future investigations in stem cell activation with granulocyte-colony-stimulating factor after myocardial infarction. Nat Clin Pract Cardiovasc Med 2007;4:S119-22.

    Article  PubMed  CAS  Google Scholar 

  4. Zohlnhofer D, Kastrati A, Schomig A. Stem cell mobilization by granulocyte-colony-stimulating factor in acute myocardial infarction: Lessons from the REVIVAL-2 trial. Nat Clin Pract Cardiovasc Med 2007;4:S106-9.

    Article  PubMed  Google Scholar 

  5. Takano H, Qin Y, Hasegawa H, et al. Effects of G-CSF on left ventricular remodeling and heart failure after acute myocardial infarction. J Mol Med 2006;84:185-93.

    Article  PubMed  Google Scholar 

  6. Herrmann HC. Update and rationale for ongoing acute myocardial infarction trials: Combination therapy, facilitation, and myocardial preservation. Am Heart J 2006;151:S30-9.

    Article  PubMed  Google Scholar 

  7. Bengel FM, Higuchi T, Javadi MS, Lautamäki R. Cardiac positron emission tomography. J Am Coll Cardiol 2009;54:1-15.

    Article  PubMed  Google Scholar 

  8. Schinkel AF, Poldermans D, Elhendy A, Bax JJ. Assessment of myocardial viability in patients with heart failure. J Nucl Med 2007;48:1135-46.

    Article  PubMed  Google Scholar 

  9. Beanlands RS, Chow BJ, Dick A, et al. CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multidetector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease—executive summary. Can J Cardiol 2007;23:107-19.

    Article  PubMed  CAS  Google Scholar 

  10. Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability. Circulation 2008;117:103-14.

    Article  PubMed  Google Scholar 

  11. Perrone-Filardi P, Bacharach SL, Dilsizian V, et al. Clinical significance of reduced regional myocardial glucose uptake in regions with normal blood flow in patients with chronic coronary artery disease. J Am Coll Cardiol 1994;23:608-16.

    Article  PubMed  CAS  Google Scholar 

  12. Yamagishi H, Akioka K, Hirata K, et al. A reverse flow-metabolism mismatch pattern on PET is related to multivessel disease in patients with acute myocardial infarction. J Nucl Med 1999;40:1492-8.

    PubMed  CAS  Google Scholar 

  13. Yamagishi H, Akioka K, Hirata K, et al. A reverse flow-metabolism mismatch pattern: A new marker of viable myocardium with greater contractility during dobutamine stress than myocardium with a flow-metabolism mismatch pattern. Jpn Circ J 2000;64:659-66.

    Article  PubMed  CAS  Google Scholar 

  14. Zanco P, Desideri A, Mobilia G, et al. Effects of left bundle branch block on myocardial FDG PET in patients without significant coronary artery stenoses. J Nucl Med 2000;41:973-7.

    PubMed  CAS  Google Scholar 

  15. Mesotten L, Dispersyn GD, Maes A, et al. PET reversed mismatch in an experimental model of subacute myocardial infarction. Eur J Nucl Med 2001;28:457-65.

    Article  PubMed  CAS  Google Scholar 

  16. Mesotten L, Maes A, Herregods M, et al. PET “reversed mismatch pattern” early after acute myocardial infarction: Follow-up of flow, metabolism and function. Eur J Nucl Med 2001;28:466-71.

    Article  PubMed  CAS  Google Scholar 

  17. Terlizzi R, Suzzi G, Zanco P, et al. Evidence of reverse mismatch with positron emission tomography imaging in a patient with reversible myocardial dysfunction. Ital Heart J 2002;3:611-4.

    PubMed  Google Scholar 

  18. Nowak B, Sinha AM, Schafer WM, et al. Cardiac resynchronization therapy homogenizes myocardial glucose metabolism and perfusion in dilated cardiomyopathy and left bundle branch block. J Am Coll Cardiol 2003;41:1523-8.

    Article  PubMed  Google Scholar 

  19. Thompson K, Saab G, Birnie D, et al. Is septal glucose metabolism altered in patients with left bundle branch block and ischemic cardiomyopathy? J Nucl Med 2006;47:1763-8.

    PubMed  CAS  Google Scholar 

  20. Glover C, Beanlands R, deKemp R, Garrard L, Mostert K, Atkins H. Stem Cell Mobilization by G-CSF Post Myocardial Infarction to Promote Myocyte Regeneration. Circulation 2003;108: abstract 2289

    Google Scholar 

  21. Machac J, Bacharach SL, Bateman TM, et al. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 2006;13:e121-51.

    Article  PubMed  Google Scholar 

  22. Dilsizian V, Bacharach SL, Beanlands RS, et al. (2009) ASNC imaging guidelines for nuclear cardiology procedures: PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 16. doi:10.1007/s12350-009-9094-9.

  23. Klein R, Adler A, Beanlands RS, de Kemp RA. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography. Phys Med Biol 2007;52:659-73.

    Article  PubMed  CAS  Google Scholar 

  24. Parkash R, de Kemp RA, Ruddy TD, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 2004;11:440-9.

    Article  PubMed  CAS  Google Scholar 

  25. Beanlands RSB, Ruddy TD, de Kemp RA, et al. Positron emission tomography and recovery following revascularization (PARR-1): The importance of scar and the development of a prediction rule for the degree of recovery of the left ventricular function. J Am Coll Cardiol 2002;40:1735-43.

    Article  PubMed  Google Scholar 

  26. Yoshinaga K, Chow BJ, Williams K, et al. What is the prognostic value with rubidium-82 perfusion positron emission tomography imaging? J Am Coll Cardiol 2006;48:1029-39.

    Article  PubMed  Google Scholar 

  27. Vitale GD, de Kemp RA, Ruddy TD, Williams K, Beanlands RS. Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 2001;42:1730-6.

    PubMed  CAS  Google Scholar 

  28. Klein R, Lortie M, Adler A, Beanlands R, de Kemp R. Fully automated software for polar-map registration and sampling from PET images. IEEE Nucl Sci Symp Conf Record 2006;6:3185-8.

    Article  Google Scholar 

  29. de Kemp RA, Nahmias C. Automated determination of the left ventricular long axis in cardiac positron emission tomography. Physiol Meas 1996;17:95-108.

    Article  Google Scholar 

  30. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 2002;105:539-42.

    Article  PubMed  Google Scholar 

  31. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.

    Article  PubMed  Google Scholar 

  32. Haas F, Augustin N, Holper K, et al. Time course and extend of improvement of dysfunctioning myocardium in patients with coronary disease and severely depressed left ventricular function after revascularization: Correlation with positron emission Tomographic findings. J Am Coll Cardiol 2000;36:1927-34.

    Article  PubMed  CAS  Google Scholar 

  33. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction: Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-Fluorodeosyglucose. Circulation 1991;83:26-37.

    PubMed  CAS  Google Scholar 

  34. Maes A, Van de Werf F, Nuyts J, Bormans G, Desmet W, Mortelmans L. Impaired myocardial tissue perfusion early after successful thrombolysis: Impact on myocardial flow, metabolism, and function at late follow-up. Circulation 1995;92:2072-8.

    PubMed  CAS  Google Scholar 

  35. Doenst T, Taegtmeyer H. Profound underestimation of glucose uptake by [18F]2-deoxy-2-fluoroglucose in reperfused rat heart muscle. Circulation 1998;97:2454-62.

    PubMed  CAS  Google Scholar 

  36. Schelbert HR, Henze E, Phelps ME, Kuhl DE. Assessment of regional myocardial ischemia by positron-emission computed tomography. Am Heart J 1982;103:588-97.

    Article  PubMed  CAS  Google Scholar 

  37. Schwaiger M, Pirich C. Reverse flow-metabolism mismatch: What does it mean? J Nucl Med 1999;40:1499-502.

    PubMed  CAS  Google Scholar 

  38. Lear JL. Relationship between myocardial clearance rates of carbon-11-acetate-derived radiolabel and oxidative metabolism: Physiologic basis and clinical significance. J Nucl Med 1991;32:1957-60.

    PubMed  CAS  Google Scholar 

  39. Wallhaus TR, Taylor M, DeGrado TR, et al. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 2001;103:2441-6.

    PubMed  CAS  Google Scholar 

  40. Altehoefer C, vom Dahl J, Bares R, Stocklin GL, Buell U. Metabolic mismatch of septal beta-oxidation and glucose utilization in left bundle branch block assessed with PET. J Nucl Med 1995;36:2056-9.

    PubMed  CAS  Google Scholar 

  41. Inoue N, Takahashi N, Ishikawa T, et al. Reverse perfusion-metabolism mismatch predicts good prognosis in patients undergoing cardiac resynchronization therapy—a pilot study. Circ J 2007;71:126-31.

    Article  PubMed  Google Scholar 

  42. Gropler RJ, Siegel BA, Sampathkumaran K, et al. Dependence of recovery of contractile function on maintenance of oxidative metabolism after myocardial infarction. J Am Coll Cardiol 1992;19:989-97.

    Article  PubMed  CAS  Google Scholar 

  43. Peterson LR, Gropler RJ. Radionuclide imaging of myocardial metabolism. Circ Cardiovasc Imaging 2010;3:211-22.

    Article  PubMed  Google Scholar 

  44. Ha AC, Renaud JM, Dekemp RA, Thorn S, Dasilva J, Garrard L, et al. In vivo assessment of myocardial glucose uptake by positron emission tomography in adults with the PRKAG2 cardiac syndrome. Circ Cardiovasc Imaging 2009;2:485-91.

    Article  PubMed  Google Scholar 

  45. Vanoverschelde JL, Wijns W, Borgers M, Heyndrickx G, Depré C, Flameng W, et al. Chronic myocardial hibernation in humans. From bedside to bench. Circulation 1997;95:1961-71.

    PubMed  CAS  Google Scholar 

  46. Di Carli MF, Prcevski P, Singh TP, et al. Myocardial blood flow, function, and metabolism in repetitive stunning. J Nucl Med 2000;41:1227-34.

    PubMed  Google Scholar 

  47. Schwaiger M, Schelbert HR, Ellison D, et al. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 1985;6:336-47.

    Article  PubMed  CAS  Google Scholar 

  48. Langer A, Burns RJ, Freeman MR, et al. Reverse redistribution on exercise thallium scintigraphy: Relationship to coronary patency and ventricular function after myocardial infarction. Can J Cardiol 1992;8:709-15.

    PubMed  CAS  Google Scholar 

  49. Dilsizian V, Bateman TM, Bergmann SR, et al. Metabolic imaging with beta-methyl-p-[(123)I]-iodophenyl-pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 2005;112:2169-74.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from the Canadian Institutes of Health Research (Grant # 74569; CG PI), and supplemented by a program grant from the Heart and Stroke Foundation of Ontario (HSFO grant PRG6242; RB PI). D. Anselm was supported by the HSFO Studentship Fund and the Queen’s University JD Hatcher Foundation Award. D. Anselm and A. Anselm were co-supervised by R. Beanlands and C. Glover who were co-senior authors of this work. The study is registered at (NCT00394498, www.clinicaltrials.gov/ct2/show/NCT00394498). R. Beanlands is a Career Investigator supported by HSFO. The authors thank staff in the cardiac PET unit (May Aung, Kimberly Gardner, Michaela Garkish, Patricia Grant, Laurie Camrass) and cyclotron facility (Samantha Mason, Paul Coletta, Jeffrey Collins) and Stephanie Thorn, MSc, for their work and dedication to this project. Dr Beanlands has research grant funding from GE Healthcare, MDS Nordion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Glover MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselm, D.D., Anselm, A.H., Renaud, J. et al. Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction. J. Nucl. Cardiol. 18, 657–667 (2011). https://doi.org/10.1007/s12350-011-9389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-011-9389-5

Keywords

Navigation