Skip to main content

Advertisement

Log in

trans-Resveratrol induces apoptosis in human breast cancer cells MCF-7 by the activation of MAP kinases pathways

  • Research Paper
  • Published:
Genes & Nutrition Aims and scope Submit manuscript

Abstract

Polyphenols represent a large class of plant-derived molecules with a general chemical structure that act as potent free radical scavengers. They have long been recognized to possess several therapeutic activities ranging from anti-thrombotic to antioxidant. Moreover, the capability of polyphenols to act as reducing or oxidizing molecules depends on the presence of environmental metals and on the concentrations used. In this work we demonstrated that the stilbene trans-resveratrol was able to commit human breast cancer MCF-7 cells to apoptosis. Mainly, we evidenced a pivotal role of the mitochondria in this phenomenon as cytochrome c release into the cytosol was found after the treatment. We further showed that trans-resveratrol was able to affect cellular redox state. In particular, it induced an early production of ROS and lipid oxidation, and only later compromised the GSH/GSSG ratio. This mode of action was mirrored by a temporally different activation of JNK and p38MAPK, with the former rapidly induced and the latter weakly activated at long intervals. The results obtained demonstrate a pro-apoptotic activity for trans-resveratrol, and suggest a preferential activation of different classes of MAP kinases in response to different oxidative stimuli (ROS versus GSH/GSSG alteration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Azmi AS, Bhat SH, Hanif S, Hadi SM (2006) Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for anticancer properties. FEBS Lett 580:533–538

    Article  PubMed  CAS  Google Scholar 

  2. Bhat KPL, Kosmeder JW, Pezzuto JM (2001) Biological effects of resveratrol. Antioxid Redox Signal 3:1041–1064

    Article  PubMed  CAS  Google Scholar 

  3. Bohmont C, Aaronson LM, Mann K, Pardini RS (1987) Inhibition of mitochondrial NADH oxidase, succinoxidase, and ATPase by naturally occurring flavonoids. J Nat Prod 50:427–433

    Article  PubMed  CAS  Google Scholar 

  4. Briviba K, Pan L, Rechkemmer G (2002) Red wine polyphenols inhibit the growth of colon carcinoma cells and modulate the activation pattern of mitogen-activated protein kinases. J Nutr 132:2814–2818

    PubMed  CAS  Google Scholar 

  5. Clement MV, Hirpara JL, Chawdhury SH, Pervaiz S (1998) Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 92:996–1002

    PubMed  CAS  Google Scholar 

  6. Chichirau A, Flueraru M, Chepelev LL, Wright JS, Willmore WG, Durst T, Hussain HH, Charron M (2005) Mechanism of cytotoxicity of catechols and a naphthalenediol in PC12-AC cells: the connection between extracellular autoxidation and molecular electronic structure. Free Radic Biol Med 38:344–355

    Article  PubMed  CAS  Google Scholar 

  7. Delmas D, Rebe C, Lacour S, Filomenko R, Athias A, Gambert P, Cherkaoui-Malki M, Jannin B, Dubrez-Daloz L, Latruffe N, Solary E (2003) Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 278:41482–41490

    Article  PubMed  CAS  Google Scholar 

  8. Dorrie J, Gerauer H, Wachter Y, Zunino SJ (2001) Resveratrol induces extensive apoptosis by depolarizing mitochondrial membranes and activating caspase-9 in acute lymphoblastic leukemia cells. Cancer Res 61:4731–4739

    PubMed  CAS  Google Scholar 

  9. Elbling L, Weiss RM, Teufelhofer O, Uhl M, Knasmueller S, Schulte-Hermann R, Berger W, Micksche M (2005) Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J 19:807–809

    PubMed  CAS  Google Scholar 

  10. Filomeni G, Aquilano K, Civitareale P, Rotilio G, Ciriolo MR (2005) Activation of c-Jun-N-terminal kinase is required for apoptosis triggered by glutathione disulfide in neuroblastoma cells. Free Radic Biol Med 39:345–354

    Article  PubMed  CAS  Google Scholar 

  11. Filomeni G, Aquilano K, Rotilio G, Ciriolo MR (2005) Antiapoptotic response to GSH depletion: involvement of heat shock proteins and NF-κB activation. Antioxid Redox Signal 7:446–455

    Article  PubMed  CAS  Google Scholar 

  12. Filomeni G, Aquilano K, Rotilio G, Ciriolo MR (2003) Reactive oxygen species-dependent c-Jun NH2-terminal kinase/c-Jun signaling cascade mediates neuroblastoma cell death induced by diallyl disulfide. Cancer Res 63:5940–5949

    PubMed  CAS  Google Scholar 

  13. Filomeni G, Aquilano K, Rotilio G, Ciriolo MR (2005) Glutathione-related systems and modulation of extracellular signal-regulated kinases are involved in resistance of AGS adenocarcinoma gastric cells to diallyl disulfide-induced apoptosis. Cancer Res 65:11735–11742

    Article  PubMed  CAS  Google Scholar 

  14. Filomeni G, Rotilio G, Ciriolo MR (2002) Cell signalling and the glutathione redox system. Biochem Pharmacol 64:1057–1064

    Article  PubMed  CAS  Google Scholar 

  15. Filomeni G, Rotilio G, Ciriolo MR (2005) Disulfide relays and phosphorylative cascades: partners in redox-mediated signalling pathways. Cell Death Differ 12:1555–1563

    Article  PubMed  CAS  Google Scholar 

  16. Filomeni G, Rotilio G, Ciriolo MR (2003) Glutathione disulfide induces apoptosis in U937 cells by a redox-mediated p38 MAP kinase pathway. FASEB J 17:64–66

    PubMed  CAS  Google Scholar 

  17. Galati G, Chan T, Wu B, O’Brien PJ (1999) Glutathione-dependent generation of reactive oxygen species by the peroxidase-catalyzed redox cycling of flavonoids. Chem Res Toxicol 12:521–525

    Article  PubMed  CAS  Google Scholar 

  18. Galati G, Sabzevari O, Wilson JX, O’Brien PJ (2002) Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology 177:91–104

    Article  PubMed  CAS  Google Scholar 

  19. Galati G, O’Brien PJ (2004) Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 37:287–303

    Article  PubMed  CAS  Google Scholar 

  20. Garg AK, Buchholz TA, Aggarwal BB (2005) Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 7:1630–1647

    Article  PubMed  CAS  Google Scholar 

  21. Hadi SM, Asad SF, Singh S, Ahmad A (2000) Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 50:167–171

    Article  PubMed  CAS  Google Scholar 

  22. Herman-Antosiewicz A, Singh SV (2005) Checkpoint kinase 1 regulates diallyl trisulfide-induced mitotic arrest in human prostate cancer cells. Journal of Biol Chem 280:28519–28528

    Article  CAS  Google Scholar 

  23. Hileman EO, Liu J, Albitar M, Keating MJ, Huang P (2003) Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity. Cancer Chemother Pharmacol 53:209–219

    Article  PubMed  CAS  Google Scholar 

  24. Hodnick WF, Kung FS, Roettger WJ, Bohmont CW, Pardini RS (1986) Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids: a structure–activity study. Biochem Pharmacol 35:2345–2357

    Article  PubMed  CAS  Google Scholar 

  25. Hodnick WF, Milosavljevic EB, Nelson JH, Pardini RS (1988) Electrochemistry of flavonoids: relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. Biochem Pharmacol 37:2607–2611

    Article  PubMed  CAS  Google Scholar 

  26. Hodnick WF, Ahmad S, Pardini RS (1998) Induction of oxidative stress by redox active flavonoids. Adv Exp Med Biol 439:131–150

    PubMed  CAS  Google Scholar 

  27. Hsieh TC, Wu JM (1999) Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines. Exp Cell Res 249:109–115

    Article  PubMed  CAS  Google Scholar 

  28. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  PubMed  CAS  Google Scholar 

  29. Kagawa S, Gu J, Honda T, McDonnell TJ, Swisher SG, Roth JA, Fang B (2001) Deficiency of caspase-3 in MCF7 cells blocks Bax-mediated nuclear fragmentation but not cell death. Clin Cancer Res 7:1474–1480

    PubMed  CAS  Google Scholar 

  30. Kim YA, Lee WH, Choi TH, Rhee SH, Park KY, Choi YH (2003) Involvement of p21WAF1/CIP1, pRB, Bax and NF-kappaB in induction of growth arrest and apoptosis by resveratrol in human lung carcinoma A549 cells. Int J Oncol 23:1143–1149

    PubMed  CAS  Google Scholar 

  31. Kong AN, Owuor E, Yu R, Hebbar V, Chen C, Hu R, Mandlekar S (2001) Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab Rev 33:255–271

    Article  PubMed  CAS  Google Scholar 

  32. Kong Q, Beel JA, Lillehei KO (2000) A threshold concept for cancer therapy. Med Hypothesis 55:29–35

    Article  CAS  Google Scholar 

  33. Lee ER, Kang YJ, Kim JH, Lee HAT, Cho SG (2005) Modulation of apoptosis in HaCaT keratinocytes via differential regulation of ERK signaling pathway by flavonoids. J Biol Chem 280:31498–31507

    Article  PubMed  CAS  Google Scholar 

  34. Li Y, Liu J, Liu X, Xing K, Wang Y, Li F, Yao L (2006) Resveratrol-induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells are associated with modulation of phosphorylated Akt and caspase-9. Appl Biochem Biotechnol 135:181–192

    Article  PubMed  CAS  Google Scholar 

  35. Liu MJ, Wang Z, Li HX, Wu RC, Liu YZ, Wu QY (2004) Mitochondrial dysfunction as an early event in the process of apoptosis induced by woodfordin I in human leukemia K562 cells. Toxicol Appl Pharmacol 194:141–155

    Article  PubMed  CAS  Google Scholar 

  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  37. Manna SK, Mukhopadhyay A, Aggarwal BB (2000) Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164:6509–6519

    PubMed  CAS  Google Scholar 

  38. Matsuzawa A, Ichijo H (2005) Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid Redox Signal 7:472–481

    Article  PubMed  CAS  Google Scholar 

  39. Matsuzawa A, Nishitoh H, Tobiume K, Takeda K, Ichijo H (2002) Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid Redox Signal 4:415–425

    Article  PubMed  CAS  Google Scholar 

  40. Meunier S, Hanedanian M, Desage-El Murr M, Nowaczyk S, Le Gall T, Pin S, Renault JP, Boquet D, Creminon C, Mioskowski C, Taran F (2005) High-throughput evaluation of antioxidant and pro-oxidant activities of polyphenols with thymidine protection assays. Chem Biochem 6:1234–1241

    CAS  Google Scholar 

  41. Mgbonyebi OP, Russo J, Russo IH (1998) Antiproliferative effect of synthetic resveratrol on human breast epithelial cells. Int J Oncol 12:865–869

    PubMed  CAS  Google Scholar 

  42. Michels G, Watjen W, Niering P, Steffan B, Thi QH, Chovolou Y, Kampkotter A, Bast A, Proksch P, Kahl R (2005) Pro-apoptotic effects of the flavonoid luteolin in rat H4IIE cells. Toxicology 206:337–348

    Article  PubMed  CAS  Google Scholar 

  43. Mohan J, Gandhi AA, Bhavya BC, Rashmi R, Karunagaran D, Indu R, Santhoshkumar TR (2006) Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J Biol Chem 281:17599–17611

    Article  PubMed  CAS  Google Scholar 

  44. Nakazato T, Ito K, Ikeda Y, Kizaki M (2005) Green tea component, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species. Clin Cancer Res 11:6040–6049

    Article  PubMed  CAS  Google Scholar 

  45. Narayanan BA, Narayanan NK, Re GG, Nixon DW (2003) Differential expression of genes induced by resveratrol in LNCaP cells: p53-mediated molecular targets. Int J Cancer 104:204–212

    Google Scholar 

  46. Nemeikaite-Ceniene A, Imbrasaite A, Sergediene E, Cenas N (2005) Quantitative structure-activity relationships in prooxidant cytotoxicity of polyphenols: role of potential of phenoxyl radical/phenol redox couple. Arch Biochem Biophys 441:182–190

    Article  PubMed  CAS  Google Scholar 

  47. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  PubMed  CAS  Google Scholar 

  48. Pardini RS (1995) Toxicity of oxygen from naturally occurring redox-active pro-oxidants. Arch Insect Biochem Physiol 29:101–118

    Article  PubMed  CAS  Google Scholar 

  49. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110

    Article  PubMed  CAS  Google Scholar 

  50. Pellecchia M, Reed JC (2004) Inhibition of anti-apoptotic Bcl-2 family proteins by natural polyphenols: new avenues for cancer chemoprevention and chemotherapy. Curr Pharm Des 10:1387–1398

    Article  PubMed  CAS  Google Scholar 

  51. Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, Lunec J (1998) Vitamin C exhibits pro-oxidant properties. Nature 392:559

    Article  PubMed  CAS  Google Scholar 

  52. Qanungo S, Das M, Haldar S, Basu A (2005) Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 26:958–967

    Article  PubMed  CAS  Google Scholar 

  53. Raza H, John A (2005) Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments. Toxicol Appl Pharmacol 207:212–220

    PubMed  CAS  Google Scholar 

  54. Rossi L, Aquilano A, Filomeni G, Lombardo MF, Rotilio G, Ciriolo MR (2004) Putative mechanisms of apoptosis related to redox unbalance. In: Ozben K, Chevion M (eds) Frontiers in neurodegenerative disorders and aging: fundamental aspect, clinical perspectives and new insight. IOS press, NATO Sciences Series, The Netherlands, pp 207–250

    Google Scholar 

  55. Rotilio G, Mavelli I, Rossi L, Ciriolo MR (1985) Biochemical mechanism of oxidative damage by redox-cycling drugs. Environ Health Perspect 64:259–264

    Article  PubMed  CAS  Google Scholar 

  56. Schneider Y, Vincent F, Duranton B, Badolo L, Gosse F, Bergmann C, Seiler N, Raul F (2000) Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett 158:85–91

    Article  PubMed  CAS  Google Scholar 

  57. Sexton E, Van Themsche C, LeBlanc K, Parent S, Lemoine P, Asselin E (2006) Resveratrol interferes with AKT activity and triggers apoptosis in human uterine cancer cells. Mol Cancer 175:45

    Article  CAS  Google Scholar 

  58. She QB, Bode AM, Ma WY, Chen NY, Dong Z (2001) Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res 61:1604–1610

    PubMed  CAS  Google Scholar 

  59. Subbaramaiah K, Michaluart P, Chung WJ, Tanabe T, Telang, N, Dannenberg AJ (1999) Resveratrol inhibits cyclooxygenase-2 transcription in human mammary epithelial cells. Ann N Y Acad Sci 889:214–223

    Article  PubMed  CAS  Google Scholar 

  60. Tinhofer I, Bernhard D, Senfter M, Anether G, Loeffler M, Kroemer G, Kofler R, Csordas A, Greil R (2001) Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. FASEB J 15:1613–1615

    PubMed  CAS  Google Scholar 

  61. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414

    Article  PubMed  CAS  Google Scholar 

  62. Woo JH, Lim JH, Kim YH, Suh SI, Min DS, Chang JS, Lee YH, Park JW, Kwon TK (2004) Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene 23:1845–1853

    Article  PubMed  CAS  Google Scholar 

  63. Xiao D, Pinto JT, Soh JW, Deguchi A, Gundersen GG, Palazzo AF, Yoon JT, Shirin H, Weinstein IB (2003) Induction of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) is associated with microtubule depolymerization and c-Jun NH2-terminal kinase 1 activation. Cancer Res 63:6825–6837

    PubMed  CAS  Google Scholar 

  64. Yamashita N, Kawanishi S (2000) Distinct mechanisms of DNA damage in apoptosis induced by quercetin and luteolin. Free Radic Res 33:623–633

    Article  PubMed  CAS  Google Scholar 

  65. Yu R, Hebbar V, Kim DW, Mandlekar S, Pezzuto JM, Kong AN (2001) Resveratrol inhibits phorbol ester and UV-induced activator protein 1 activation by interfering with mitogen-activated protein kinase pathways. Mol Pharmacol 60:217–224

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from FIRB, MIUR, and Ministero della Sanità.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Ciriolo.

Additional information

G. Filomeni and I. Graziani are recipients of fellowships from the Italian Association for Cancer Research (AIRC-FIRC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filomeni, G., Graziani, I., Rotilio, G. et al. trans-Resveratrol induces apoptosis in human breast cancer cells MCF-7 by the activation of MAP kinases pathways. Genes Nutr 2, 295–305 (2007). https://doi.org/10.1007/s12263-007-0059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12263-007-0059-9

Keywords

Navigation