Skip to main content
Log in

Protoplast preparation and polyethylene glycol (PEG)-mediated transformation of Candida glycerinogenes

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The regeneration of Candida glycerinogenes protoplasts is a major step following genetic manipulations such as fusion and DNA-mediated transformation. An investigation of protoplast formation and cytological examination was used to gain further insight into the loss of protoplast viability in osmotically stabilized support media. Protoplasts with the highest regeneration frequency (98.6% protoplasts/mL) were isolated, using lysozyme dissolved in 1M sorbitol osmoticum. The commercial enzyme preparations, osmotic stabilisers, and growth phase were effective in raising the protoplast yield. Sodium chloride was effective for protoplast preparation; however, sugars and sugar alcohols were better for protoplast regeneration. Sorbitol at a concentration of 1 M was used in regeneration agar for further studies. Regeneration of colonies from protoplasts was maximal (11 ~ 15%) when protoplasts were incorporated in cooled agar containing 0.5% glucose, supplemented with 1M sorbitol as osmotic stabilizer. C. glycerinogenes strain was highly sensitive to zeocin, so transformation of protoplasts and PEG-mediated was achieved with an improved transformation system, using plasmid pURGAP-gfp containing zeocin gene driven by a PCgGAP promoter from C. glycerinogenes to express gfp gene and be transformed into the 5.8S rDNA site of C. glycerinogenes in order to test the system for studying the yeast osmoregulation. We developed an efficient method for transformation of C. glycerinogenes, and parameters involved in transformation efficiency were optimized. Expressions of gfp at different levels were conducted under osmotic stress containing NaCl, KCl, sorbitol or glycerol for the recombinant strains. These improved procedures for protoplast isolation, regeneration and transformation proved to be useful applications in genetic studies for other Candida species and industrial yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murlidhar, R. V. and T. Panda (2000) Fungal protoplast fusion: A revisit. Bioproc. Eng. 22: 429–431.

    Article  Google Scholar 

  2. Hopwood, D. A. (1981) Genetic studies with bacterial protoplasts. Annu. Rev. Microbiol. 35: 237–272.

    Article  CAS  Google Scholar 

  3. Illingg, T. (1987) Protoplast fusion and regeneration in Streptomyces clavuligerus. Ph. D. Thesis. University of Nottingham, Nottingham.

    Google Scholar 

  4. Zhuge, J., H. Y. Fang, Z. X. Wang, D. Z. Chen, H. R. Jin, and H. L. Gu (2001) Glycerol production by a novel osmotolerant yeast Candida glycerinogenes. Appl. Microbiol. Biotechnol. 55: 686–692.

    Article  CAS  Google Scholar 

  5. Chen, X. Z., H. Y. Fang, Z. M. Rao, W. Shen, B. Zhuge, Z. X. Wang, and J. Zhuge (2008) Cloning and characterization of a NAD+-dependent glycerol-3-phosphate dehydrogenase gene from Candida glycerinogenes, an industrial glycerol producer. FEMS Yeast Res. 8: 725–734.

    Article  CAS  Google Scholar 

  6. Wang, Z. X., J. Zhuge, H. Y. Fang, and B. A. Prior (2001) Glycerol production by microbial fermentation: A review. Biotechnol. Adv. 19: 201–223.

    Article  CAS  Google Scholar 

  7. Jin, H. R., H. Fang, and J. Zhuge (2003) By-product formation by a novel glycerol-producing yeast, Candida glycerinogenes, with different O2 supplies. Biotechnol. Lett. 25: 311–314.

    Article  CAS  Google Scholar 

  8. Kohler, G. A., T. C. White, and N. Agabian (1997) Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J. Bacteriol. 179: 2331–2338.

    CAS  Google Scholar 

  9. Walther, A. and J. Wendland (2003) An improved transformation protocol for the human fungal pathogen Candida albicans. Curr. Genet. 42: 339–343.

    Article  CAS  Google Scholar 

  10. Fincham, J. R. S. (1989) Transformation in fungi. Microbiol. Rev. 53: 148–170.

    CAS  Google Scholar 

  11. Zhang, C., H. Zong, B. Zhuge, X. Y. Lu, H. Y. Fang, and J. Zhuge (2015) Integrative expression vectors for overexpression of xylitol dehydrogenase (XYL2) in osmotolerant yeast, Candida glycerinogenes WL2002–5. J. Ind. Microbiol. Biot. 42: 113–124.

    Article  Google Scholar 

  12. Zhang, C., B. Zhuge, X. B. Zhan, H. Y. Fang, H. Zong, and J. Zhuge (2013) Cloning and characterization of a novel NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase gene from Candida glycerinogenes and use of its promoter. Yeast. 30: 157–163.

    Article  Google Scholar 

  13. Moriguchi, M. and S. Kotagawa (1994) Preparation and regeneration of Aspergellus awamori. Lett. Appl. Microbiol. 18: 30–31.

    Article  Google Scholar 

  14. Chen, X. Z., H. Y. Fang, Z. M. Rao, W. Shen, B. Zhuge, Z. X. Wang, and J. Zhuge (2008) An efficient genetic transformation method for glycerol producer Candida glycerinogenes. Microbiol. Res. 163: 531–537.

    Article  CAS  Google Scholar 

  15. Sambrook, J. and D. W. Russell (2001) Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  16. Mann, W. and J. Jeffery (1986) Yeast in molecular biology, spheroplast preparation with Candida utilis, Schizosaccharomyces pombe and Saccharomyces cerevisiae. Biosci. Rep. 6: 597–602.

    Article  CAS  Google Scholar 

  17. Kitamoto, Y., N. Mo, T. Ohiwa, and Y. Ichikawa (1988) A simple method for protoplast formation and improvement of protoplast regeneration from various fungi using an enzyme from Trichoderma harzianum. Appl. Microbiol. Biotechnol. 28: 445–450.

    Article  CAS  Google Scholar 

  18. Kirn, B. K., J. H. Kang, M. Jin, H. W. Kim, M. J. Shim, and E. C. Choi (2000) Mycelial protoplast isolation and regeneration in Lentinus lepideus. Life. Sci. 66: 1359–1367.

    Article  Google Scholar 

  19. Gupta, U., G. S. Cheema, H. S. Sodhi, and R. P. Phutela (1997) Protoplast isolation and regeneration in Agaricus bisporus strain MS 39. Mush. Res. 6: 59–62.

    Google Scholar 

  20. Vijaya, P. P. (1995) Biochemical, physiological and molecular aspects of penconazole and carbendazim resistance in mutants and protoplast fusants of Venturia inaequalis (Cooke) Wint. Ph. D. Thesis. University of Madras, Chennai, India.

    Google Scholar 

  21. Peberdy, J. F., C. E. Buckley, D. C. Daltrey, and P. M. Moore (1976) Factors affecting protoplast release in some flamentous fungi. Transactions of the British Mycol. Soc. 67: 23–26.

    Article  Google Scholar 

  22. Curragh, H. J., H. Mooibroek, J. G. H. Wessels, R. Marchant, and E. Mullan (1992) Protoplast formation and DNA-mediated transformation of Fusarium culmorum to hygromycin B resistance. Mycol. Res. 97: 313–317.

    Article  Google Scholar 

  23. Gomez, M. J., K. Luyten, and J. Ramos (1996) The capacity to transport potassium influences sodium tolerance in Saccharomyces cerevisiae. FEMS Microbiol. let. 135: 157–160.

    Article  CAS  Google Scholar 

  24. Ansell, R., K. Granath, S. Hohmann, J. M. Thevelein, and L. Adler (1997) The two isoenzymes for yeast NAD+-dependent glycerol-3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. Embo. J. 16: 2179–2187.

    Article  CAS  Google Scholar 

  25. Rao, Z. M., Z. Ma, W. Shen, H. Y. Fang, and J. Zhuge (2008) Transformation of industrialized strain Candida glycerinogenes with resistant gene zeocin via Agrobacterium tumefaciens. Curr. Microbiol. 57: 12–17.

    Article  CAS  Google Scholar 

  26. Helen, L. R. and W. D. James (2001) Protoplast preparation and transient transformation of Rhizoctonia solani. Mycol. Res. 105: 1295–1303.

    Article  Google Scholar 

  27. Peberdy, J. F. (1979) Fungal protoplasts: Isolation, reversion and fusion. Annu. Rev. Microbiol. 33: 21–39.

    Article  CAS  Google Scholar 

  28. Hocart, M. J. and J. F. Peberdy (1989) Protoplast technology and strain selection. pp. 235–257. In Biotechnology of Fungi for Improving Plant Growth. Cambridge University Press, Cambridge, London, UK

    Google Scholar 

  29. Illing, G. T., I. D. Normansell, and J. F. Peberdy (1989) Protoplast isolation and Regeneration in Streptomyces clavuligerus. J. Gen. Microbiol. 135: 2289–2291.

    CAS  Google Scholar 

  30. Svoboda, A. (1966) Regeneration of yeast protoplasts in agar gels. Exp. Cell. Res. 10: 640–642.

    Article  Google Scholar 

  31. Sheen, J. (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant. Physiol. 127: 1466–1475.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhuge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zong, H., Zhuge, B. et al. Protoplast preparation and polyethylene glycol (PEG)-mediated transformation of Candida glycerinogenes . Biotechnol Bioproc E 21, 95–102 (2016). https://doi.org/10.1007/s12257-015-0686-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0686-8

Keywords

Navigation