Skip to main content
Log in

Stability and Broad-Sense Heritability of Mineral Content in Potato: Copper and Sulfur

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Sulfur and copper are important for human health. Sulfur deficiency is rare, but may occur in the elderly. However, a large percentage of the U.S. population is deficient in copper. The purpose of this study was to determine the range of values for sulfur and copper available in advanced potato germplasm and varieties and estimate how much genetic variation exists for these two elements. Potato breeding lines and varieties in three multisite trials were evaluated for copper and sulfur content by wet ashing and Inductively Coupled Argon Plasma Emission Spectrophotometer analysis. Stability and broad-sense heritability were determined. Among genotypes, copper content ranged from 2.0 to 4.5 ug-g−1 DW. This was a 2.25-fold difference. In these three trials, environment was never significant, while genotype by environment interactions were always significant. Genotype was significant in two of the regional trials. Broad-sense heritabilities were estimated to be 0.0, 0.93 and 0.51 for the Tri-State, Western Regional Russet and Western Regional Red/Specialty trials, respectively. Among genotypes, sulfur content ranged from 991 to 1488 ug-g−1 DW. The highest value was 50 % higher than the lowest. In these three trials, environment was never significant, while genotype x environment interactions were always significant. Genotype was significant in two of the regional trials. Broad-sense heritabilities were estimated to be 0.53, 0.68 and 0.88, for Tri-State, Western Regional Russet, and Western Regional Red/Specialty trials, respectively. For both sulfur and copper, selection in the Western Regional Russet and Western Regional Red/Specialty trials is likely to lead to an increase in content. Selection for sulfur in the Tri-State would result in a gain as well. These results suggest that genetic improvements could be made to potato to enhance the concentrations of these minerals.

Resumen

El azufre y el cobre son importantes para la salud humana. La deficiencia en azufre es rara, pero se puede presentar en la tercera edad. No obstante, un gran porcentaje de la población de los EUA es deficiente en cobre. El Propósito de este estudio fue determinar la amplitud de valores para azufre y cobre disponibles en germoplasma avanzado de papa y en variedades, y estimar cuanta variación genética existe para estos dos elementos. Se evaluaron líneas de mejoramiento de papa y variedades en tres ensayos multi-sitio para el contenido de cobre y azufre por análisis de ceniza húmeda y por Espectrofotómetro de Inducción de Emisión Acoplada de Plasma de Argón. Se determinaron la estabilidad y la heredabilidad de amplio sentido. Entre genotipos, el contenido de cobre varió de 2.0 y 4.5 ug-g-l DW. Esto fue una diferencia de 2.25 veces. En estos tres ensayos, el medio ambiente nunca fue significativo, mientras que las interacciones genotipo-medio ambiente siempre fueron significativas. El genotipo tuvo significancia en dos de los ensayos regionales. Las heredabilidades de amplio sentido se estimaron en 0.0, 0.93, y 0.51 para los ensayos Tri-Estatal, Russet Regional del Oeste, y Rojas/Especiales Regional del Oeste, respectivamente. Entre los genotipos, el contenido de azufre varió de 991 a 1488 ug-g-1 DW. El valor más alto fue 50% mayor que el más bajo. En estos tres ensayos el ambiente nunca fue significativo, mientras que las interacciones genotipo x medio ambiente siempre lo fueron. El genotipo fue significativo en dos de los tres ensayos regionales. Las heredabilidades de amplio sentido se estimaron en 0.53, 0.68, y 0.88 para los ensayos Tri-Estatal, Russet Regional del Oeste, y Rojas/Especiales Regional del Oeste, respectivamente. Tanto para azufre como para cobre, la selección en Russet Regional del Oeste, y Rojas/Especiales Regional del Oeste, es probable que conduzca hacia un aumento en su contenido. La selección para azufre en el Tri-Estatal pudiera también resultar en ganancia. Estos resultados sugieren que los mejoramientos genéticos pudieran hacerse en la papa para aumentar las concentraciones de estos minerales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, S.L. Love, R.G. Novy, and J.C. Miller Jr. 2010. Stability and broad-sense heritability of mineral content in potato: iron. American Journal of Potato Research 87: 390–396.

    Article  CAS  Google Scholar 

  • Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, S.L. Love, R.G. Novy, and J.C. Miller Jr. 2011. Stability and broad-sense heritability of mineral content in potato: zinc. American Journal of Potato Research 88: 238–244.

    Article  CAS  Google Scholar 

  • Davis, J.R., J.G. Garner, and R.H. Callihan. 1974. Effects of gypsum, sulfur, terraclor and terclor super-X for potato scab control. Am Potato J 51: 35–43.

    Article  CAS  Google Scholar 

  • Epstein, E., and A.J. Bloom. 2004. Mineral nutrition of plants: principles and perspectives, 400. NY: Sinauer Associates.

    Google Scholar 

  • Food and Nutrition Board, Institute of Medicine. 2001. Copper dietary reference intakes for vitamin A, vitamin K, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc, 224–257. Washington: National Academy Press.

    Google Scholar 

  • Groff, J.L., S.S. Gropper. 2000. Advanced nutrition and human metabolism. 3rd edition. Wadsworth. Stamford, CT. 584 pp.

  • Holland, J.B., W.E. Nyquist, and C.T. Cervantes-Martinez. 2003. Estimating and interpreting heritability for plant breeding: an update. Plant Breeding Reviews 22: 9–112.

    Google Scholar 

  • Johnson, F., and C. Giulivi. 2005. Superoxide dismutases and their impact upon human health. Molecular Aspects of Medicine 26: 340–352.

    Article  CAS  PubMed  Google Scholar 

  • Kang, M.S. 1989. A new SAS program for calculating stability-variance parameters. Journal of Heredity 80: 415.

    Google Scholar 

  • Kelling, K. 1981. Potato fertility requirements and recommendation; Micronutrients. Proc. Wisconsin Ann Potato Mtgs, 1981.

  • Knapp, S.J., W.W. Stroup, and W.M. Ross. 1985. Exact confidence intervals for heritability on a progeny mean basis. Crop Science 25: 192–194.

    Article  Google Scholar 

  • Ma, J., and N.M. Betts. 2000. Zinc and copper intakes and their major food sources for older adults in the 1994–96 continuing survey of food intakes by individuals (CSFII). Journal of Nutrition 130: 2838–2843.

    CAS  PubMed  Google Scholar 

  • Marschner, H. 1995. Mineral nutrition of higher plants, 2nd ed. New York: Academic. 889 pp.

    Google Scholar 

  • Masters, M., and R.A. McCance. 1939. The sulphur content of foods. Biochemical Journal 33: 1304–1302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milne, D.B. 1998. Copper intake and assessment of copper status. American Journal of Clinical Nutrition 67: 1014–1015.

    Google Scholar 

  • National Research Council. 1989. Recommended dietary allowances, 10 th ed, 224–230. Washington: National Academy Press.

    Google Scholar 

  • Pavlista, A. 2013. Cropwatch: Potato Education Guide. Sulfur http://cropwatch.unl.edu/web/potato/peg_sulfur

  • Rastovski, A., and A. van Es. 1987. Storage of potatoes: Post-harvest behaviour, store design, storage practice, handling. Pudoc, Wageningen, the Netherlands. 453 pp.

  • Rykbost, K.A., N.W. Christensen, and J. Maxwell. 1993. Fertilization of russet Burbank in short-season environment. Am. Potato J 70: 699–710.

    Article  Google Scholar 

  • Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environment components of variability. Heredity 29: 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Singh, I.,.S.A.P.Sagare, M. Coma, D. Perlmutter, R. Gelin, R.D. Bell, R J. Deane, E. Zhong, M. Parisi, J. Cisweski, and R. T. Kasper. 2013. Low levels of copper disrupt brain amyloid Beta homeostasis by altering its production and clearance. PNAS doi/10.1073/pnas.1302212110

  • Subar, A.F., S.M. Krebs-Smith, A. Cook, and L.L. Kahle. 1998. Dietary sources of nutrients among US adults, 1989 to 1991. J Am Dietetic Assoc 98: 537–547.

    Article  CAS  Google Scholar 

  • Westermann, D.T. 1993. Fertility management. In Potato health management, ed. R.C. Rowe, 77–86. St. Paul: APS Press. 178 pp.

    Google Scholar 

  • Woolfe, J.A. 1987. The potato in the human diet. Cambridge: Cambridge University Press. 237 pp.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Brown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, C.R., Haynes, K.G., Moore, M. et al. Stability and Broad-Sense Heritability of Mineral Content in Potato: Copper and Sulfur. Am. J. Potato Res. 91, 618–624 (2014). https://doi.org/10.1007/s12230-014-9390-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-014-9390-z

Keywords

Navigation