Skip to main content
Log in

Stability and Broad-Sense Heritability of Mineral Content in Potato: Potassium and Phosphorus

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

In the study of nutritional variability in potato it is desirable to know the present range of expression and genetic potential for increase. Potato breeding lines and varieties in two separate trials were evaluated for potassium and phosphorus content by wet ashing and Inductively Coupled Argon Plasma Emission Spectrophotometer analysis. Stability and broad-sense heritability were determined. Among genotypes, potassium content ranged from 1.85 and 2.49 % DW while phosphorus content ranged from 0.16 to 0.34 % DW over both trials. Genotype by environment interactions were significant in the Tri-State and Western Regional Red/Specialty (WR-R/SP) trials for both potassium and phosphorus, while environments were not. Genotype was a significant source of variation for both minerals in the WR-R/SP trial only. In the Tri-State trials, 7 and 4 of ten clones were unstable before and after removal of environmental heterogeneity, respectively, for potassium content, and 5 and 4 genotypes were unstable before and after removal of environmental heterogeneity, respectively, for phosphorus. In the WR-R/SP Trials, 7 and 3 of 13 clones were unstable before and after removal of environmental heterogeneity, respectively, for potassium content, and 3 and 4 genotypes were unstable before and after removal of environmental heterogeneity, respectively, for phosphorus. Broad sense heritability was low for both potassium and phosphorus in the Tri-State Russet-Skin Trials but high for both potassium and phosphorus in the WR-R/SP Trials. Although potato is a minor contributor of phosphorus to the human diet, it is an important source of potassium. Adult males and females receive 12 % of the Recommended Dietary Allowance of potassium from 100 g of potato. Estimates of broad-sense heritability from these two trials suggest that genotypes with higher levels of both potassium and phosphorus can be selected from within the Red/Specialty market class, but not from within the Tri-State russet class. An increase in potassium content in the potato, for which the daily need in the human body is so high, could be a boon to human health.

Resumen

En el estudio de la variabilidad nutricional en papa es deseable conocer la amplitud actual de expresión y potencial genético para aumentarla. Se evaluaron líneas avanzadas y variedades en dos ensayos separados para el contenido de potasio y fósforo por análisis de cenizas húmedas y por Espectrofotómetro de Emisión de Plasma de Acoplamiento Inductivo de Argón. Se determinaron la estabilidad y la amplitud de la heredabilidad. El contenido de potasio varió de 1.85 a 2.49 % de peso seco (PS) entre genotipos, mientras que el contenido de fósforo fluctuó de 0.16 a 0.34 % PS en ambos ensayos. Las interacciones genotipo-medio ambiente fueron significativas en los ensayos Tri-Estatales y Regionales del Oeste de las especialidades rojas (WR/-R/SP) para ambos elementos, mientras que los ambientes solos no lo fueron. El genotipo fue una fuente significativa de variación para ambos minerales solamente en el ensayo WR-R/SP. En los Ensayos Tri-Estatales, 7 y 4 de diez clones fueron inestables antes y después de eliminar la heterogeneidad ambiental, respectivamente, para el contenido de potasio, y 5 y 4 genotipos fueron inestables antes y después de eliminar la heterogeneidad ambiental, respectivamente, para fosforo. En los ensayos WR-R/SP, 7 y 3 de 13 clones fueron inestables antes y después de eliminar la heterogeneidad ambiental, respectivamente, para el contenido de potasio, y 3 y 4 genotipos fueron inestables antes y después de quitar la heterogeneidad ambiental, respectivamente, para fosforo. La amplitud de la heredabilidad fue baja para ambos elementos en los ensayos Tri-Estatales de piel tipo russet (corrugada), pero alta para ambos minerales en los ensayos de WR-R/SP. Aún cuando la papa contribuye poco en fosforo de la dieta humana, es una fuente importante de potasio. Los adultos hombres y mujeres reciben 12 % de los requerimientos de la dieta recomendados de potasio por cada 100 g de papa. Las estimaciones de la amplitud de la heredabilidad de estos dos ensayos sugieren que los genotipos con los niveles más altos, tanto de fosforo como de potasio, se pueden seleccionar de entre la clase de mercado de especialidad/roja, pero no de los de clase russet del Tri-Estatal. Un aumento en el contenido de potasio en la papa, del cual la necesidad diaria en el cuerpo humano es tan alta, pudiera ser de un gran beneficio para la salud humana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bamberg, J.B., M.W. Martin, and J.P. Palta. 2007. Variation in Solanum species’ tuber potassium accumulation and its implications for human nutrition. American Journal of Potato Research 85: 2 (Abstract).

    Google Scholar 

  • Bethke, P.C., and S.H. Jansky. 2008. The effects of boiling and leaching on content of potassium and other minerals in potato. Journal of Food Science 75: H80–H85.

    Article  Google Scholar 

  • Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, S.L. Love, R.G. Novy, and J.C. Miller Jr. 2010. Stability and broad-sense heritability of mineral content in potato: Iron. American Journal of Potato Research 87: 390–396.

    Article  CAS  Google Scholar 

  • Brown, C.R., K.G. Haynes, M. Moore, M.J. Pavek, D.C. Hane, S.L. Love, R.G. Novy, and J.C. Miller Jr. 2011. Stability and broad-sense heritability of mineral content in potato: Zinc. American Journal of Potato Research 88: 238–244.

    Article  CAS  Google Scholar 

  • Demigné, C., H. Sabboh, M.-N. Horcajada, and V. Coxam. 2008. Contribution of various dietary constitutents to the acid base status: interest of animal models of latent metabolic acidosis. The Open Nutrition Journal 2: 1–4.

    Article  Google Scholar 

  • Epstein, E., and A.J. Bloom. 2004. Mineral nutrition of plants: principles and perspectives. NY: Sinauer Associates. 400 pp.

    Google Scholar 

  • Ervin, R.B., C.Y. Wang, J.D. Wright, and J. Kennedy-Stephenson. 2004. Dietary intake of selected minerals for the United States population: 1999–2000. Advance data from vital and health statisics; no. 341. Hyattsville: National Center for Health Statistics.

    Google Scholar 

  • Frassetto, L., R.C. Morris Jr., D.E. Sellmeyer, K. Todd, and A. Sebastian. 2001. Diet, evolution and aging: the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to chloride ratios in the human diet. European Journal of Nutrition 40: 200–213.

    Article  CAS  PubMed  Google Scholar 

  • Ghazi, N.A.-K. 2000. Growth, water use efficiency and sodium and potassium acquisition by tomato cultivars grown under salt stress. Journal of Plant Nutrition 23: 1–8.

    Google Scholar 

  • He, F.J., and G.A. MacGregor. 2008. Beneficial effects of potassium on human health. Physiologia Plantarum 133: 725–735.

    Article  CAS  PubMed  Google Scholar 

  • Holland, J.B., W.E. Nyquist, and C.T. Cervantes-Martinez. 2003. Estimating and interpreting heritability for plant breeding: an update. Plant Breeding Reviews 22: 9–112.

    Google Scholar 

  • Kang, M.S. 1989. A new SAS program for calculating stability-variance parameters. Journal of Heredity 80: 415.

    Google Scholar 

  • Kido, M., A. Katsuyuki, M. Onozato, T. Akihiro, M. Yoshikawa, T. Ogita, and T. Fujita. 2007. Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension. Hypertension 51: 225–231.

    Article  PubMed  Google Scholar 

  • Knapp, S.J., W.W. Stroup, and W.M. Ross. 1985. Exact confidence intervals for heritability on a progeny mean basis. Crop Science 25: 192–194.

    Article  Google Scholar 

  • Leibman, B. 2010. Bad for bones: the latest on food and fractures. Nutrition Action Health Letters. Center for science in the public interest. November pp. 1–7.

  • Levy, D., W.K. Coleman, and R.E. Veilleux. 2013. Adaptation of potato to water shortage: irrigation management and enhancement of tolerance to drought and salinity. American Journal of Potato Research 90: 186–206.

    Article  Google Scholar 

  • Lorenz, O.A., and M.T. Vittum. 1980. Phosphorus nutrition in vegetable crops and sugar beets. In The role of phosphorus in agriculture, ed. F.E. Khasawneh, E.C. Sample, and E.J. Kamprath, 737–762. Madison: American Society of Agronomy. 910 pp.

    Google Scholar 

  • Marschner, H. 1995. Mineral nutrition of higher plants, 2nd ed. New York: Academic. 889 pp.

    Google Scholar 

  • Mount, D.B., and K. Zandi-Nejad. 2008. Disorders of potassium balance. In Brenner and Rector’s the kidney, 8th ed, ed. B.M. Brenner. Philadelphia: Saunders Elsevier. chap 15.

    Google Scholar 

  • National Research Council. 1989. Recommended dietary allowances. Committee on Dietary Allowances. Subcommittee on the Tenth Edition of the RDA’s. Committee on Life Sciences. Washington, DC: National Academy Press. 302 pp.

    Google Scholar 

  • Packer, M. 1990. The potential role of potassium as a determinant of morbidity and mortality in patients with systemic hypertension and congestive heart failure. The American Journal of Cardiology 65: 45E–51E.

    Article  CAS  PubMed  Google Scholar 

  • Piepho, H.-P. 1996. Analysis of genotype-by-environment interaction and phenotypic stability. In Genotype by environment interaction, ed. M.S. Kang and H.G. Gauch. Boca Raton: CRC Press.

    Google Scholar 

  • Quick, W.A., and P.H. Li. 1976. Phosphorus balance in potato tubers. Potato Research 19: 305–312.

    Article  CAS  Google Scholar 

  • Rastovski, A., and A. van Es. 1987. Storage of potatoes: post-harvest behaviour, store design, storage practice, handling. Wageningen: Pudoc. 453 pp.

    Google Scholar 

  • Richards, R.A. 2006. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agricultural Water Management 80: 197–211.

    Article  Google Scholar 

  • Roberts, S., and R. McDole. 1985. Potassium nutrition of potatoes. In Potassium in agriculture, ed. R.D. Munson, 779–818. Madison: American Society of Agronomy. 1223 pp.

    Google Scholar 

  • Rodriguez, D.J., and M.T. Ross. 1998. Can nutrition and exercise prevent chronic disease states? Getting back to the basics of health care: part 1: nutritional and dietary factors. Disease Management 1: 135–149.

    Article  Google Scholar 

  • Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environment components of variability. Heredity 29: 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Subar, A.F., S.M. Krebs-Smith, A. Cook, and L.L. Kahle. 1998. Dietary sources of nutrients among US adults, 1989 to 1991. Journal of the American Dietetic Association 98: 537–547.

    Article  CAS  PubMed  Google Scholar 

  • Vertregt, N. 1968. Relation between black spot and composition of the potato crop. European Potato Journal 11: 34–44.

    Article  Google Scholar 

  • Vos, J., and A.J. Haverkort. 2007. Water availability and potato crop performance. In Potato biology and biotechnology: advances and perspectives, ed. D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, M.A. Taylor, D.K.L. MacKerron, and H.A. Ross, 333–351. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Westermann, D.T. 1993. Fertility management. In Potato health management, ed. R.C. Rowe, 77–86. St. Paul: APS Press. 178 pp.

    Google Scholar 

  • White, P.J., J.E. Bradshaw, M.F.B. Dale, G. Ramsay, J.P. Hammond, and M.R. Broadley. 2009. Relationships between yield and mineral concentrations in potato tubers. HortScience 44: 6–11.

    Google Scholar 

  • Woolfe, J.A. 1987. The potato in the human diet. Cambridge: Cambridge University Press. 237 pp.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, C.R., Haynes, K.G., Moore, M. et al. Stability and Broad-Sense Heritability of Mineral Content in Potato: Potassium and Phosphorus. Am. J. Potato Res. 90, 516–523 (2013). https://doi.org/10.1007/s12230-013-9323-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-013-9323-2

Keywords

Navigation