Skip to main content

Advertisement

Log in

Internal Heat Necrosis of Potato—A Review

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Non-pathogenic necroses of potato tubers have been described in the literature since the early 20th century using different names including internal rust spot, internal browning, physiological internal necrosis, internal brown fleck, chocolate spot, internal brown spot and internal heat necrosis. These reports very likely describe either the same, or a collection of similar disorders, falling under the general umbrella of “internal necrosis”, with the expression of symptoms being significantly altered via genotype by environment interactions. A number of widely-grown cultivars (e.g. ‘Russet Burbank’, ‘Atlantic’ and ‘Yukon Gold’) are susceptible to internal necrosis, making it an economically significant problem. In Atlantic, this syndrome has been termed internal heat necrosis (IHN) in the eastern United States by several investigators because heat and drought are believed to be important triggers of this condition. Investigators in the midwestern and western United States term this same or similar disorder internal brown spot (IBS). IHN and IBS are an internal physiological disorder of potato characterized by brownish red necrotic patches of parenchymal tissue that typically, though not always, occur along and/or inside the vascular ring. Several reports indicate that IHN is most commonly associated with the vascular ring tissue near the apical end of the tuber, but IHN may form anywhere in the tuber. In many cases, it is very difficult to distinguish between IHN and IBS, and several overlapping environmental factors are associated with each of these disorders. High day and night temperatures early in the growing season, combined with low rainfall, have been shown to increase the frequency and severity of IHN and IBS in several cultivars. Considerable research has examined the role of calcium in ameliorating IHN and IBS expression. Much of this work suggests an important role for calcium in the development of IHN, but other biotic and abiotic factors undoubtedly affect IHN and IBS expression. The biochemistry and genetics behind internal necroses of potato have historically been the least-researched facets of this problem. Research has shown that enzymes involved in protecting cells from oxidative damage may be involved, and heritability studies have demonstrated that broad-sense heritability for IHN resistance is high. This review seeks to outline previous work on physiological internal necroses of potato due to high temperatures, summarize our current knowledge of IHN, and point to new areas of investigation to develop IHN resistant potato varieties.

Resumen

Desde comienzos del siglo 20 se han descrito en la literatura unas necrosis no patogénicas del tubérculo de papa, usando diferentes nombres, como herrumbre interna, oscurecimiento interno, necrosis fisiológica interna, punto oscuro interno, mancha chocolate, mancha marrón interna y necrosis interna por calor. Estos nombres parecen describir ya sea la misma enfermedad o una colección de desórdenes similares que caen dentro de la descripción general “necrosis interna”, con la expresión de los síntomas significativamente alterada, a través de interacciones genotipo ambiente. Varios de los cultivares ampliamente cultivados (tales como Russet Burbank; “Atlantic” y ‘Yukon Gold’) son susceptibles a la necrosis interna, haciéndola un problema económicamente significativo. En Atlantic, este síndrome ha sido llamado necrosis interna por calor (IHN) en la parte oriental de los Estados Unidos por varios investigadores porque se cree que el calor y la sequía son importantes factores desencadenantes para esta condición. Los investigadores en el medio oeste y oeste de los Estados Unidos llaman a este o similares desórdenes mancha parda interna (IBS). El IHN y el IBS son desórdenes fisiológicos internos de la papa, caracterizados por parches necróticos marrón rojizos de tejido parenquimático del tubérculo que típicamente, aunque no siempre, se presentan a lo largo o dentro de anillo vascular. Varios informes indican que IHN está asociado más comúnmente con el tejido de anillo vascular cerca de extremo apical, pero puede estar localizado en cualquier parte de tubérculo. En muchos casos, es muy difícil distinguir entre IHS e IBS y varios otros factores ambientales asociados con estos desórdenes. Las temperaturas altas diurna y nocturna al inicio de la etapa del cultivo, combinadas con poca lluvia, han demostrado incrementar la frecuencia y severidad de IHN e IBS en varios cultivares. Se ha hecho investigación considerable para examinar el rol del calcio en disminuir expresión de IHN e IBS. Mucho de este trabajo sugiere el rol importante del calcio en disminuir el desarrollo de IHN, pero indudablemente otros factores bióticos y abióticos afectan la necrosis interna de la papa. La bioquímica y genética detrás de la necrosis interna han sido las facetas históricamente menos investigadas del problema. La investigación ha demostrado que las enzimas involucradas en la protección de las células contra el daño oxidativo pueden estar involucradas y los estudios de heredabilidad han demostrado que la herencia de sentido amplio es alta para resistencia al IHN. Esta revisión busca resumir el trabajo previo sobre la necrosis fisiológica interna de la papa debida a altas temperaturas, resume el conocimiento actual de IHN y señala las nuevas áreas de investigación para desarrollar variedades resistentes de papa al IHN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbasi, F., H. Onodera, S. Toki, H. Tanaka, and S. Komatsu. 2004. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Molecular Biology 55: 541–552.

    Article  PubMed  CAS  Google Scholar 

  • Anil, V.S., A.C. Harmon, and K.S. Kao. 2003. Temporal association of a Ca2+-dependent protein kinase with oil bodies during seed development in Santalum album L.; its biochemical characterization and significance. Plant Cell Physiology 44: 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Anonymous. 1978. Market diseases of potatoes. Agricultural Handbook No. 479 Washington, DCUSDA-ARS.

    Google Scholar 

  • Bamberg, J.B., J.P. Palta, L.A. Peterson, M. Martin, and A.R. Kreuger. 1993. Screening tuber-bearing Solanum (potato) germplasm for efficient accumulation of tuber calcium. American Potato Journal 70: 219–226.

    Article  CAS  Google Scholar 

  • Bangerth, F. 1979. Calcium related physiological disorders of plants. Annual Review of Plant Physiology 17: 97–122.

    CAS  Google Scholar 

  • Baruzzini, L., L.A. Ghirardelli, and E. Honsell. 1989. Ultrastructural changes in tubers of potato (Solanum tuberosum L.) affected by rust spot Potato Research 32: 405–410.

    Article  Google Scholar 

  • Burr, S. 1928. Sprain or internal rust spot of potato. Annals of Applied Biology 15: 563–585.

    Article  Google Scholar 

  • Busse, J.S., and J.P. Palta. 2006. Investigating the in vivo calcium transport path to developing potato tuber using 45Ca: a new concept in potato tuber calcium nutrition. Physiologia Plantarum 128: 313–323.

    Article  CAS  Google Scholar 

  • Chehab, E.W., O.R. Patharkar, A.D. Hegeman, T. Taybi, and J.C. Cushman. 2004. Autophosphorylation and subcellular localization dynamics of a salt and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiology 135: 1430–1446.

    Article  PubMed  CAS  Google Scholar 

  • Clough, G.H. 1994. Potato tuber yield, mineral concentration, and quality after calcium fertilization. Journal of the American Society for Horticultural Science 119: 175–179.

    CAS  Google Scholar 

  • Collier, G.F., D.C.E. Wurr, and V.C. Huntington. 1978. The effect of calcium nutrition on the incidence of internal rust spot in the potato. Journal of Agricultural Science 91: 241–243.

    CAS  Google Scholar 

  • Davies, H.V. 1998. Physiological mechanisms associated with the development of internal necrotic disorders of potato. American Journal of Potato Research 75: 37–44.

    Google Scholar 

  • Davies, H.V., and L.S. Talbot. 1989. Studies on the physiological basis for genotypic variation in susceptibility of tubers to internal rust spot (IRS)—a calcium-related disorder. American Potato Journal 66: 514, (abstr).

    Google Scholar 

  • Ellison, J.H. 1953. Varietal susceptibility to internal brown spot of potatoes. American Potato Journal 30: 92–94.

    Article  Google Scholar 

  • Henninger, M.R., J.W. Patterson, and R.E. Webb. 1979. Tuber necrosis in Atlantic. American Potato Journal 56: 464, (abstr).

    Google Scholar 

  • Henninger, M.R., S.B. Sterrett, and K.G. Haynes. 2000. Broad-sense heritability and stability of internal heat necrosis and specific gravity in tetraploid potatoes. Crop Science 40: 977–984.

    Article  Google Scholar 

  • Hiller, L.K., D.C. Koller, and R.E. Thornton. 1985. Physiological disorders of potato tubers. In: Potato physiology. P.H. Li (ed) 389–455 Orlando, FL Academic.

    Google Scholar 

  • Hopkins, W.G. 1999. Introduction to plant physiology, 2nd edition, p. 70. New York City: Wiley.

    Google Scholar 

  • Iritani, W.M., L.D. Weller, and N.R. Knowles. 1984. Factors influencing incidence of internal brown spot in ‘Russet Burbank’ potatoes. American Potato Journal 61: 335–343.

    Article  Google Scholar 

  • Jiang, Y., and B. Huang. 2001. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. Journal of Experimental Botany 52: 341–349.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, W.C., and J.A. Christiansen. 1970. Internal necrosis of potato tubers—calcium deficiency. HortScience 5: 309, (abstr).

    Google Scholar 

  • Larson, R.H., and A.R. Albert. 1945. Physiological internal necrosis of potato tubers in Wisconsin. Journal of Agricultural Research 71: 487–504.

    CAS  Google Scholar 

  • Larson, R.H., and A.R. Albert. 1949. Relation of potato varieties to incidence of physiological internal tuber necrosis. American Potato Journal 26: 427–431.

    Google Scholar 

  • Lee, J., and J.J. Rudd. 2002. Calcium-dependent protein kinases: versatile plant signaling components necessary for pathogen defense. Trends in Plant Science 7: 97–98.

    Article  PubMed  CAS  Google Scholar 

  • Lee, G.S., S.B. Sterrett, and M.R. Henninger. 1992. A heat-sum model to determine yield and onset of internal heat necrosis for Atlantic potato. American Potato Journal 69: 353–362.

    Article  Google Scholar 

  • Llop-Tous, I., E. Domingez-Puigjaner, and M. Vendrell. 2002. Characterization of a strawberry cDNA clone homologous to calcium-dependent protein kinases that is expressed during fruit ripening and affected by low temperature. Journal of Experimental Botany 378: 2283–2285.

    Article  CAS  Google Scholar 

  • Monk, L.S., D.B. McPhail, B.A. Goodman, and H.V. Davies. 1989. An electron spin resonance investigation of internal rust spot, a physiological disorder of the potato tuber. Free Radical Research Communications 5: 345–350.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, N.L., L.K. Hiller, and L.J. Mikitzel. 1996. The dependence of internal brown spot development upon calcium fertility in potato tubers. Potato Research 39: 165–178.

    Article  CAS  Google Scholar 

  • Rowe, R.C. (ed). 1993. Potato health management. St. Paul, MN: APS, 178 pp.

  • Silva, G.H., R.W. Chase, R. Hammerschmidt, M.L. Vitosh, and R.B. Kitchen. 1991. Irrigation, nitrogen and gypsum effects on specific gravity and internal defects of Atlantic potatoes. American Potato Journal 68: 751–765.

    Article  Google Scholar 

  • Simmons, K.E., and K.A. Kelling. 1987. Potato responses to calcium application on several soil types. American Potato Journal 64: 119–136.

    Article  Google Scholar 

  • Sterrett, S.B. and M.R. Henninger. 1991. Influence of calcium on internal heat necrosis of Atlantic potato. American Potato Journal 68: 467–477.

    Article  Google Scholar 

  • Sterrett, S.B., and M.R. Henninger. 1997. Internal heat necrosis in the mid-Atlantic region—influence of environment and cultural management. American Potato Journal 74: 233–243.

    Article  Google Scholar 

  • Sterrett, S.B., and G.L. Wilson. 1990. Internal heat necrosis in Atlantic: A survey of the disorder. Vegetable Growers’ News 44: 2–4.

    Google Scholar 

  • Sterrett, S.B., G.S. Lee, M.R. Henninger, and M. Lentner. 1991a. Predictive model for onset and development of internal heat necrosis of Atlantic potato. Journal of the American Society for Horticultural Science 116: 701–705.

    Google Scholar 

  • Sterrett, S.B., M.R. Henninger, and G.S. Lee. 1991b. Relationship of internal heat necrosis of potato to time and temperature after planting. Journal of the American Society for Horticultural Science 116: 697–700.

    Google Scholar 

  • Sterrett, S.B., M.R. Henninger, and K.G. Haynes. 1999. Relationship of internal heat necrosis to specific gravity. American Journal of Potato Research 76: 385, (abstr).

    Google Scholar 

  • Sterrett, S.B., M.R. Henninger, G.C. Yencho, W. Lu, B.T. Vinyard, and K.G. Haynes. 2003. Stability of internal heat necrosis and specific gravity in tetraploid × diploid potatoes. Crop Science 43: 790–796.

    Article  Google Scholar 

  • Sterrett, S.B., K.G. Haynes, G.C. Yencho, M.R. Henninger, and B.T. Vinyard. 2006. 4×–2× potato clones with resistance or susceptibility to internal heat necrosis differ in tuber mineral status. Crop Science 46: 1471–1478.

    Article  CAS  Google Scholar 

  • Stevenson, W.R., R. Loria, G.D. Franc, and D.P. Weingartner (eds). 2001. Compendium of potato diseases, Ed 2. St. Paul, MN: APS.

  • Tzeng, K.C., A. Kelman, K.E. Simmons, and K.A. Kelling. 1986. Relationship of calcium nutrition to internal brown spot of potato tubers and sub-apical necrosis of sprouts. American Potato Journal 63: 87–97.

    Article  CAS  Google Scholar 

  • Wannamaker, M.J., and W.W. Collins. 1992. Effect of year, location, and harvest on susceptibility of cultivars to internal heat necrosis in North Carolina. American Potato Journal 69: 221–228.

    Article  Google Scholar 

  • Webb, R.E., D.R. Wilson, J.R. Shumaker, B. Graves, M.R. Henninger, J. Watts, J.A. Frank, and H.J. Murphy. 1978. Atlantic: A new potato variety with high solids, good processing quality and resistance to pests. American Potato Journal 55: 141–145.

    Article  Google Scholar 

  • Wiersum, L.K. 1966. Ca content of fruits and storage tissues in relation to the mode of water supply. Acta Botanica Neerlander 15: 406–418.

    CAS  Google Scholar 

  • Win, K., G.A. Berkowitz, and M.R. Henninger. 1991. Antitranspirant-induced increases in leaf water potential increase tuber calcium and decrease tuber necrosis in water-stressed potato plants. Plant Physiol 96: 116–120.

    Article  PubMed  CAS  Google Scholar 

  • Wolcott, A.R., and N.K. Ellis. 1959. Internal browning of potato tubers: varietal susceptibility as related to weather and cultural practices. American Potato Journal 36: 394–403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Craig Yencho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yencho, G.C., McCord, P.H., Haynes, K.G. et al. Internal Heat Necrosis of Potato—A Review. Am. J. Pot Res 85, 69–76 (2008). https://doi.org/10.1007/s12230-008-9008-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-008-9008-4

Keywords

Navigation