Skip to main content
Log in

Hard ticks and their bacterial endosymbionts (or would be pathogens)

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The symbiotic microorganisms of arthropod vectors are highly significant from several points of view, partly due to their possible roles in the transmission of pathogenic causative agents by blood-sucking vectors. Although ticks are well studied because of their significance to human health, novel microbial associations remain to be described. This review summarises several endosymbiotic bacterial species in hard ticks from various parts of the world, including Coxiella-, Francisella-, Rickettsia- and Arsenophonus-like symbionts as well as Candidatus Midichloria mitochondrii and Wolbachia. New methodologies for the isolation and characterization of tick-associated bacteria will, in turn, encourage new strategies of tick control by studying their endosymbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahantarig A, Kittayapong P (2011) Endosymbiotic Wolbachia bacteria as biological control tools of disease vectors and pests. J Appl Entomol 135:479–486

    Article  Google Scholar 

  • Ahantarig A, Malaisri P, Hirunkanokpun S, Sumrandee C, Trinachartvanit W, Baimai V (2011) Detection of Rickettsia and a novel Haemaphysalis shimoga symbiont bacterium in ticks in Thailand. Curr Microbiol 62:1502–1502. doi:10.1007/s00284-011-9887-3

    Google Scholar 

  • Andreotti R, Pérez de León AA, Dowd SE, Guerrero FD, Bendele KG, Scoles GA (2011) Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) through tag- encoded pyrosequencing. BMC Microbiol 6:11(1):6

  • Apperson CS, Engber B, Nicholson WL, Mead DG, Engel J, Yabsley MJ, Dail K, Johnson J, Watson DW (2008) Tick-borne diseases in North Carolina: is "Rickettsia amblyommii" a possible cause of rickettsiosis reported as Rocky Mountain spotted fever? Vector Borne Zoonotic Dis 8:597–606

    Article  PubMed  Google Scholar 

  • Azad AF, Beard CB (1998) Rickettsial pathogens and their arthropod vectors. Emerg Infect Dis 4:179–186

    Article  CAS  PubMed  Google Scholar 

  • Baimai V (2010) Why do we need basic research? Bangkok Printing, Bangkok

    Google Scholar 

  • Baldo L, Prendini L, Corthals A, Werren JH (2007) Wolbachia are present in southern African scorpions and cluster with supergroup F. Curr Microbiol 55:367–373

    Article  CAS  PubMed  Google Scholar 

  • Baldridge GD, Burkhardt NY, Simser JA, Kurtti TJ, Munderloh UG (2004) Sequence and expression analysis of the ompA gene of Rickettsia peacockii, an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni. Appl Environ Microbiol 70:6628–6636

    Article  CAS  PubMed  Google Scholar 

  • Bell JE, Kohls GM, Stoenner HG, Blackman DB (1963) Non-pathogenic rickettsias related to the spotted fever group from ticks, Dermacentor variabilis and Dermacentor andersoni from eastern Montana. J Immunol 90:770–781

    CAS  PubMed  Google Scholar 

  • Beninati T, Lo N, Sacchi L, Genchi C, Noda H, Bandi C (2004) A novel alpha-Proteobacterium resides in the mitochondria of ovarian cells of the tick Ixodes ricinus. Appl Environ Microbiol 70:2596–2602

    Article  CAS  PubMed  Google Scholar 

  • Benson MJ, Gawronski JD, Eveleigh DE, Benson DR (2004) Intracellular symbionts and other bacteria associated with deer ticks (Ixodes scapularis) from Nantucket and Wellfleet, Cape Cod, Massachusetts. Appl Environ Microbiol 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi MV, Casati S, Péter O, Piffaretti JC (2002) Rhipicephalus ticks infected with Rickettsia and Coxiella in Southern Switzerland (Canton Ticino). Infect Genet Evol 2:111–120

    Article  CAS  PubMed  Google Scholar 

  • Broadwater AH, Sonenshine DE, Hynes WL, Ceraul S, De SA (2002) Glass capillary tube feeding: a method for infecting nymphal Ixodes scapularis (Acari: Ixodidae) with the Lyme disease spirochete Borrelia burgdorferi. J Med Entomol 39:285–292

    Article  PubMed  Google Scholar 

  • Brouqui P, Dupont HT, Drancourt M, Berland Y, Etienne J, Leport C, Goldstein F, Massip P, Micoud M, Bertrand A et al (1993) Chronic Q fever. Ninety-two cases from France, including 27 cases without endocarditis. Arch Intern Med 153:642–648

    Article  CAS  PubMed  Google Scholar 

  • Burgdorfer W (1988) Ecological and epidemiological considerations of Rocky Mountain spotted fever and scrub typhus. In: Walker DH (ed) Biology of rickettsial diseases. CRC Press, Boca Raton, pp 33–50

    Google Scholar 

  • Burgdorfer W, Brinton LP, Hughes LE (1973) Isolation and characterization of symbiotes from the Rocky Mountain wood tick Dermacentor andersoni. J Invertebr Pathol 22:424–434

    Article  CAS  PubMed  Google Scholar 

  • Burgdorfer W, Hayes SF, Mavros AJ (1981) Non-Pathogenic Rickettsiae in Dermacentor andersoni: A Limiting Factor for the Distribution of Rickettsia rickettsii. In: Burgdorfer W, Anacker RL (eds) Rickettsiae and Rickettsial Disease. Academic, New York, pp 585–594

    Google Scholar 

  • Carmichael JR, Fuerst PA (2006) A rickettsial mixed infection in a Dermacentor variabilis tick from Ohio. Ann N Y Acad Sci 1078:334–337

    Article  CAS  PubMed  Google Scholar 

  • Childs JE, Paddock CD (2002) Passive surveillance as an instrument to identify risk factors for fatal Rocky Mountain spotted fever: is there more to learn? AmJTrop Med Hyg 66:450–457

    Google Scholar 

  • Clay K, Fuqua C, Lively C, Wade M (2006) Microbial community ecology of tick-borne human pathogens. In: Collinge S, Ray C (eds) Disease Ecology. University Press, Oxford, pp 41–57

    Google Scholar 

  • Clay K, Klyachko O, Grindle N, Civitello D, Oleske D, Fuqua C (2008) Microbial communities and interactions in the lone star tick, Amblyomma americanum. Mol Ecol 17:4371–4381

    Article  CAS  PubMed  Google Scholar 

  • Cotte V, Bonnet S, Cote M, Vayssier-Taussat M (2010) Prevalence of five pathogenic agents in questing Ixodes ricinus ticks from western France. Vector Borne Zoonotic Dis 10:723–730

    Article  PubMed  Google Scholar 

  • Cowdry EV (1925) A group of micro-organisms transmitted hereditarily in ticks and apparently unassociated with disease. J Exp Med 41:817–830

    Article  CAS  PubMed  Google Scholar 

  • Dale C, Beeton M, Harbison C, Jones T, Pontes M (2006) Isolation, pure culture, and characterization of ‘Candidatus Arsenophonus arthropodicus’, an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. Appl Environ Microbiol 72:2997–3004

    Article  CAS  PubMed  Google Scholar 

  • de la Fuente J, Blouin EF, Kocan KM (2003) Infection exclusion of the rickettsial pathogen Anaplasma marginale in the tick vector Dermacentor variabilis. Clin Diagn Lab Immunol 10:182–184

    PubMed  Google Scholar 

  • Dergousoff SJ, Chilton NB (2010) Detection of a new Arsenophonus-type bacterium in Canadian populations of the Rocky Mountain wood tick, Dermacentor andersoni. Exp Appl Acarol 52:85–91

    Article  CAS  PubMed  Google Scholar 

  • Epis S, Sassera D, Beninati T, Lo N, Beati L, Piesman J, Rinaldi L, McCoy KD, Torina A, Sacchi L, Clementi E, Genchi M, Magnino S, Bandi C (2008) Midichloria mitochondrii is widespread in hard ticks (Ixodidae) and resides in the mitochondria of phylogenetically diverse species. Parasitology 135:485–494

    Article  CAS  PubMed  Google Scholar 

  • Fujita O, Tatsumi M, Tanabayashi K, Yamada A (2006) Development of a real-time PCR assay for detection and quantification of Francisella tularensis. Jpn J Infect Dis 59:46–51

    CAS  PubMed  Google Scholar 

  • Gage KL, Schrumpf ME, Karstens RH, Burgdorfer W, Schwan TG (1994) DNA typing of rickettsiae in naturally infected ticks using a polymerase chain reaction/restriction fragment length polymorphism system. AmJTrop Med Hyg 50:247–260

    CAS  Google Scholar 

  • Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, Brenner DJ (1991) Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic was Nasonia vitripennis. Int J Syst Bacteriol 41:563–568

    Article  Google Scholar 

  • Gillespie JJ, Joardar V, Williams KP, Driscoll T, Hostetler JB, Nordberg E, Shukla M, Walenz B, Hill CA, Nene VM, Azad AF, Sobral BW, Caler E (2011) A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 94:376–394

    Google Scholar 

  • Goddard J (2009) Historical and recent evidence for close relationships among Rickettsia parkeri, R. conorii, R. africae, and R. sibirica: implications for rickettsial taxonomy. J Vector Ecol 34:238–242

    PubMed  Google Scholar 

  • Grindle N, Tyner JJ, Clay K, Fuqua C (2003) Identification of Arsenophonus-type bacteria from the dog tick Dermacentor variabilis. J Invertebr Pathol 83:264–266

    Article  PubMed  Google Scholar 

  • Halos L, Bord S, Cotté V, Gasqui P, Abrial D, Barnouin J, Boulouis HJ, Vayssier-Taussat M, Vourc'h G (2010) Ecological factors characterizing the prevalence of bacterial tick-borne pathogensin Ixodes ricinus ticks in pastures and woodlands. Appl Environ Microbiol 76:4413–4420

    Article  CAS  PubMed  Google Scholar 

  • Harden VA (1990) Rocky Mountain spotted fever: history of a twentieth century disease. The Johns Hopkins University Press. Baltimore, Maryland

    Google Scholar 

  • Harrus S, Perlman-Avrahami A, Mumcuoglu KY, Morick D, Eyal O, Baneth G (2011) Molecular detection of Ehrlichia canis, Anaplasma bovis, Anaplasma platys, Candidatus Midichloria mitochondrii and Babesia canis vogeli in ticks from Israel. Clin Microbiol Infect 17:459–463

    Article  CAS  PubMed  Google Scholar 

  • Hartelt K, Oehme R, Frank H, Brockmann SO, Hassler D, Kimmig P (2004) Pathogens and symbionts in ticks: prevalence of Anaplasma phagocytophilum (Ehrlichia sp.), Wolbachia sp., Rickettsia sp., and Babesia sp. in Southern Germany. Int J Med Microbiol 293(Suppl 37):86–92

    PubMed  Google Scholar 

  • Hayes SF, Burgdorfer W (1981) Ultrastructural comparisons of Wolbachia-like symbiote of ticks (Acari: Ixodidae). In: Burgdorfer W, Anacker AL (eds) Rickettsiae and Rickettsial Diseases. Academic Press, New York, pp 281–333

    Google Scholar 

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiol Lett 281:215–220

    Article  CAS  PubMed  Google Scholar 

  • Hirunkanokpun S, Kittayapong P, Cornet JP, Gonzalez JP (2003) Molecular evidence for novel tick-associated spotted fever group rickettsiae from Thailand. J Med Entomol 40:230–237

    Google Scholar 

  • Inokuma H, Raoult D, Brouqui P (2000) Detection of Ehrlichia platys DNA in brown dog ticks (Rhipicephalus sanguineus) in Okinawa Island, Japan. J Clin Microbiol 38:4219–4221

    CAS  PubMed  Google Scholar 

  • Jasinskas A, Zhong J, Barbour AG (2007) Highly prevalent Coxiella sp. bacterium in the tick vector Amblyomma americanum. Appl Environ Microbiol 73:334–336

    Article  CAS  PubMed  Google Scholar 

  • Jellison WL (1974) Tularemia in North America, 1930–1974. University of Montana, Missoula

    Google Scholar 

  • Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–S14

    Article  PubMed  Google Scholar 

  • Klyachko O, Stein B, Grindle N, Clay K, Fuqua C (2007) Localization and visualization of a Coxiella-type symbiont within the Lone Star Tick Amblyomma americanum. Appl Environ Microbiol 73:6584–6594

    Article  CAS  PubMed  Google Scholar 

  • Kollars TM Jr, Tippayachai B, Bodhidatta D (2001) Short report: Thai tick typhus, Rickettsia honei, and a unique rickettsia detected in Ixodes granulatus (Ixodidae: Acari) from Thailand. AmJTrop Med Hyg 65:535–537

    CAS  Google Scholar 

  • Kurtti TJ, Palmer AT, Oliver JH Jr (2002) Rickettsia-like bacteria in Ixodes woodi (Acari: Ixodidae). J Med Entomol 39:534–540

    Article  PubMed  Google Scholar 

  • Lee JH, Park HS, Jang WJ, Koh SE, Park TK, Kang SS, Kim BJ, Kook YH, Park KH, Lee SH (2004) Identification of the Coxiella sp detected from Haemaphysalis longicornis ticks in Korea. Micro Immun 48:125–130

    CAS  Google Scholar 

  • Lewis D (1979) The detection of rickettsia-like microorganisms within the ovaries of female Ixodes ricinus ticks. Z Parasitenkd 59:295–298

    Article  CAS  PubMed  Google Scholar 

  • Lively CM, Clay K, Wade WJ, Fuqua C (2005) Competitive coexistence of vertically and horizontally transmitted parasites. Evol Ecol Res 7:1183–1190

    Google Scholar 

  • Lo N, Beninati T, Sassera D, Bouman EA, Santagati S, Gern L, Sambri V, Masuzawa T, Gray JS, Jaenson TG, Bouattour A, Kenny MJ, Guner ES, Kharitonenkov IG, Bitam I, Bandi C (2006) Widespread distribution and high prevalence of an alpha proteobacterial symbiont in the tick Ixodes ricinus. Environ Microbiol 8:1280–1287

    Article  CAS  PubMed  Google Scholar 

  • Macaluso KR, Sonenshine DE, Ceraul SM, Azad AF (2002) Rickettsial infection in Dermocentor variabilis (Acari: Ixodidae) inhibits transovarial transmission of a second Rickettsia. J Med Entomol 39:809–813

    Article  PubMed  Google Scholar 

  • Magnarelli LA, Anderson JF, Burgdorfer W, Philip RN, Chappell WA (1985) Spotted fever group rickettsiae in immature and adult ticks (Acari: Ixodidae) from a focus of Rocky Mountain spotted fever in Connecticut. Can J Microbiol 12:1131–1135

    Article  Google Scholar 

  • Mediannikov O, Ivanov L, Nishikawa M, Saito R, Sidelnikov YN, Zdanovskaya NI, Tarasevich IV, Suzuki H (2003) Molecular evidence of Coxiella-like microorganism harbored by Haemaphysalis concinnae ticks in the Russian Far East. Ann N Y Acad Sci 990:226–228

    Article  CAS  PubMed  Google Scholar 

  • Mixson TR, Campbell SR, Gill JS, Ginsberg HS, Reichard MV, Schulze TL, Dasch GA (2006) Prevalence of Ehrlichia, Borrelia, and Rickettsial agents in Amblyomma americanum (Acari: Ixodidae) collected from nine states. J Med Entomol 43:1261–1268

    Article  PubMed  Google Scholar 

  • Morimoto S, Kurtti TJ, Noda H (2006) In vitro cultivation and antibiotic susceptibility of a Cytophaga-like intracellular symbiote isolated from the tick Ixodes scapularis. Current Microbiol 52:324–329

    Article  CAS  PubMed  Google Scholar 

  • Mudrow M (1932) Uber die intrazellularen Symbionten der Zecken. Z Parasitenk 5:138–183

    Article  Google Scholar 

  • Munderloh UG, Kurtti TJ (1995) Cellular and molecular interrelationships between ticks and prokaryotic tick borne pathogens. Annu Rev Entomol 40:221–243

    Article  CAS  PubMed  Google Scholar 

  • Munderloh UG, Jauron SD, Kurtti TJ (2005) The tick: a different kind of host for human pathogens. In: Goodman JL, Dennis D, Sonenshine DE (eds) Tick-borne diseases of humans. ASM Press, Washington DC, pp 37–64

    Google Scholar 

  • Murray RG, Schleifer KH (1994) Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 44(1):174–176

    Article  CAS  PubMed  Google Scholar 

  • Niebylski ML, Peacock MG, Fischer ER, Porcella SF, Schwan TG (1997a) Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella. Appl Environ Microbiol 63:3933–3940

    CAS  PubMed  Google Scholar 

  • Niebylski ML, Schrumpf ME, Burgdorfer W, Fischer ER, Gage KL, Schwan TG (1997b) Rickettsia peacockii sp. nov., a new species infecting wood ticks, Dermacentor andersoni, in Western Montana. Int J Sys Bacteriol 47:446–452

    Article  CAS  Google Scholar 

  • Niebylski ML, Peacock MG, Schwan TG (1999) Lethal effect of Rickettsia ricketsii on its tick vector (Dermacentor andersoni). Appl Environ Microbiol 65:773–778

    CAS  PubMed  Google Scholar 

  • Noda H, Munderloh UG, Kurtti TJ (1997) Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Environ Microbiol 63:3926–3932

    CAS  PubMed  Google Scholar 

  • Nováková E, Hypsa V, Moran NA (2009) Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:143

    Article  PubMed  Google Scholar 

  • Parola P, Raoult D (2001) Ticks and tick-borne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32:897–928

    Article  CAS  PubMed  Google Scholar 

  • Parola P, Miller RS, McDaniel P, Telford SR 3rd, Rolain JM, Wongsrichanalai C, Raoult D (2003) Emerging rickettsioses of the Thai-Myanmar border. Emerg Infect Dis 9:592–595

    Article  PubMed  Google Scholar 

  • Peacock MG, Philip RN, Williams JC, Faulkner RS (1983) Serological evaluation of Q fever in humans: enhanced phase I titers of Immunoglobulins G and A are diagnostic for Q fever endocarditis. Infect Immun 41:1089–1098

    CAS  PubMed  Google Scholar 

  • Perlman SJ, Hunter MS, Zchori-Fein E (2006) The emerging diversity of Rickettsia. Proc R Soc Lond B Biol Sci 273:2097–2106

    Article  Google Scholar 

  • Perotti MA, Clarke HK, Turner BD, Braig HR (2006) Rickettsia as obligate and mycetomic bacteria. FASEB J 20:2372–2374

    Article  CAS  PubMed  Google Scholar 

  • Philip RN, Casper EA (1981) Serotypes of spotted fever group rickettsiae isolated from Dermacentor andersoni (Stiles) ticks in western Montana. AmJTrop Med Hyg 30:230–238

    CAS  Google Scholar 

  • Plantard O, Bouju-Albert A, Malard MA, Hermouet A, Capron G, Verheyden H (2012) Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the hymenoptera endoparasitoid Ixodiphagus hookeri. PLoSOne 7:e30692

    CAS  Google Scholar 

  • Raoult D, Roux V (1997) Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev 10:694–719

    CAS  PubMed  Google Scholar 

  • Reis C, Cote M, Paul RE, Bonnet S (2011) Questing ticks in suburban forest are infected by at least six tick-borne pathogens. Vector Borne Zoonotic Dis 11:907–916

    Article  PubMed  Google Scholar 

  • Roshdy MA (1968) A rickettsialike (sic) microorganism in the tick Ornithodoros savignyi; observations on its structure and distribution in the tissues of the tick. J Invert Path 11:155–169

    Article  CAS  Google Scholar 

  • Rowley SM, Raven RJ, McGraw EA (2004) Wolbachia pipientis in Australian spiders. Curr Microbiol 49:208–214

    Article  CAS  PubMed  Google Scholar 

  • Sacchi L, Bigliardi E, Corona S, Beninati T, Lo N, Franceschi A (2004) A symbiont of the tick Ixodes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus. Tissue Cell 36:43–53

    Google Scholar 

  • Sanchez JL, Candler WH, Fishbein DB, Greene CR, Coté TR, Kelly DJ, Driggers DP, Johnson BJ (1992) A cluster of tick–borne infections: association with military training and asymptomatic infections due to Rickettsia rickettsii. Trans R Soc Trop Med Hyg 86:321–325

    Article  CAS  PubMed  Google Scholar 

  • Sassera D, Beninati T, Bandi C, Bouman EA, Sacchi L, Fabbi M, Lo N (2006) ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int J Sys Evol Microbiol 56:2535–2540

    Article  CAS  Google Scholar 

  • Satta G, Chisu V, Cabras P, Fois F, Masala G (2011) Pathogens and symbionts in ticks:a survey on tick species distribution and presence of tick-transmitted micro-organisms in Sardinia, Italy. J Med Microbiol 60(Pt 1):63–68

    Article  PubMed  Google Scholar 

  • Schouls LM, van De Pol I, Rijpkema GT, Schot CS (1999) Detection and identification of Ehrlichia, Borrelia burgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol 37:2215–2222

    CAS  PubMed  Google Scholar 

  • Scoles G (2004) Phylogenetic analysis of the Francisella-like endosymbionts of Dermacentor ticks. J Med Entomol 41:277–286

    Article  CAS  PubMed  Google Scholar 

  • Simser JA, Palmer AT, Fingerle V, Wilske B, Kurtti TJ, Munderloh UG (2002) Rickettsia monacensis sp. nov., a spotted fever group rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl Environ Microbiol 68:4559–4566

    Article  CAS  PubMed  Google Scholar 

  • Subramanian G, Sekeyova Z, Raoult D, Mediannikov O (2012) Multiple tick associated bacteria in Ixodes ricinus from Slovakia. Ticks Tick Borne Dis 3(5–6):406–410

    Article  PubMed  Google Scholar 

  • Sun LV, Scoles GA, Fish D, O’Neill SL (2000) Francisella-like endosymbionts of ticks. J Invertebr Pathol 76:301–303

    Article  CAS  PubMed  Google Scholar 

  • Taylor M, Mediannikov O, Raoult D, Greub G (2012) Endosymbiotic bacteria associated with nematodes, ticks and amoebae. FEMS Immunol Med Microbiol 64:21–31

    Article  CAS  PubMed  Google Scholar 

  • Telford SR, Goethert HK (2004) Emerging tick-borne infections: rediscovered and better characterized, or truly ‘new’? Parasitology 129:s301–s327

    Article  PubMed  Google Scholar 

  • Thao ML, Baumann P (2004) Evidence for multiple acquisition of Arsenophonus by whitefly Species (Sternorrhycha: Aleyrodidae). Curr Microbiol 48:140–144

    Article  CAS  PubMed  Google Scholar 

  • Venzal JM, Estrada-Peña A, Castro O, de Souza CG, Félix ML, Nava S, Guglielmone AA (2008) Amblyomma triste Koch, 1844 (Acari: Ixodidae): hosts and seasonality of the vector of Rickettsia parkeri in Uruguay. Vet Parasitol 155:104–109

  • Weller SJ, Baldridge GD, Munderloh UG, Noda H, Simser J, Kurtti TJ (1998) Phylogenetic placement of rickettsiae from the ticks Amblyomma americanum and Ixodes scapularis. J Clin Microbiol 36:1305–1317

    CAS  PubMed  Google Scholar 

  • Williams-Newkirk AJ, Rowe LA, Mixson-Hayden TR, Dasch GA (2012) Presence, genetic variability, and potential significance of "Candidatus Midichloria mitochondrii" in the lone star tick Amblyomma americanum. Exp Appl Acarol 58:291–300

    Article  PubMed  Google Scholar 

  • Yuasa Y, Yoshiie K, Takasaki T, Yoshida H, Oda H (1996) Retrospective survey of chronic Q fever in Japan by using PCR to detect Coxiella burnetii DNA in paraffin- embedded clinical samples. J Clin Microbiol 34:824–827

    CAS  PubMed  Google Scholar 

  • Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016

    Article  CAS  PubMed  Google Scholar 

  • Zhang GQ, Hotta A, Mizutani M, Ho T, Yamaguchi T, Fukushi H, Hirai K (1998) Direct identification of Coxiella burnetii plasmids in human sera by nested PCR. J Clin Microbiol 36:2210–2213

    CAS  PubMed  Google Scholar 

  • Zhang X, Norris DE, Rasgon JL (2011) Distribution and molecular characterization of Wolbachia endosymbionts and filarial nematodes in Maryland populations of the lone star tick (Amblyomma americanum). FEMS Microbiol Ecol 77:50–56

    Article  CAS  PubMed  Google Scholar 

  • Zhong J, Jasinskas A, Barbour AG (2007) Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One 2:e405

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Mahidol University Research grant SCJV1099000737 and the Faculty of Science, Mahidol University, Thailand research grant, SCM55-004. The authors thank Professor Sansanee Chaiyaroj from the Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand for her advice and support in the research areas of ticks and tick-borne diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunee Ahantarig.

Additional information

Arunee Ahantarig and Wachareeporn Trinachartvanit contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahantarig, A., Trinachartvanit, W., Baimai, V. et al. Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol 58, 419–428 (2013). https://doi.org/10.1007/s12223-013-0222-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-013-0222-1

Keywords

Navigation