Skip to main content
Log in

Effect of Microwave-Assisted Pretreatment Conditions on Hemicellulose Conversion and Enzymatic Hydrolysis of Norway Spruce

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The present study investigated the ability of pressurized microwave pretreatment to convert softwood lignocellulose to fermentable monosaccharides. Norway spruce lignocellulose was subjected to microwave pretreatment (600 and 1200 W) under high pressure at different temperatures. Microwave pretreatment at mild acid concentrations (0.05–0.1 % H2SO4), temperatures of 170 and 200 °C, and a very short incubation time (5 min) released 84–100 % of hemicellulosic monosaccharides (mannose, galactose, and xylose). In addition, minimal amounts of degradation products (5-(hydroxymethyl)-2-furaldehyde, levulinic acid) were formed. The highest yield of fermentable sugars was 75 %, after both the pressurized microwave pretreatment with conditions 0.05 % H2SO4/600 W/200 °C/5 min and enzymatic hydrolysis with 20 FPU Celluclast 1.5 L, 400 nkat of Novozyme 188, and polyethyleneglycol (PEG) 4000 (0.3 g/g of pretreated material). Results showed that already 0.05 % H2SO4 used in microwave pretreatment could effectively liberate hemicellulose monosaccharides without serious monosaccharide degradation and form a basis for enzymatic hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhu JY, Pan XJ (2010) Woody Biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002

    Article  CAS  PubMed  Google Scholar 

  2. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  3. Iakovlev M, van Heiningen A (2012) Efficient fractionation of spruce by SO2-Ethanol-Water treatment: closed mass balances for carbohydrates and sulfur. ChemSusChem 5:1625–1637

    Article  CAS  PubMed  Google Scholar 

  4. Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Ann Rev Chem Biomol Eng 2:121–145

    Article  CAS  Google Scholar 

  5. Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Research ID 787532 doi:10.4061/2011/787532

  6. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  7. Shuai L, Yang Q, Zhu JY, Lu FC, Weimer PJ, Ralph J, Pan XJ (2010) Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour Technol 101:3106–3114

    Article  CAS  PubMed  Google Scholar 

  8. Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Two-step steam pretreatment of soft wood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenergy 24:475–486

    Article  Google Scholar 

  9. Oliva JM, Sáez F, Ballesteros I, González A, José Negro M, Manzanares P, Ballesteros M (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 105–108:141–153

    Article  PubMed  Google Scholar 

  10. De Souza ROMA (2015) Theoretical aspect of microwave irradiation practices. In: Fang Z, Smith Jr. RL, Qi X. (Eds.) Production of biofuels and chemicals with microwave, 1st edn. Springer. pp. 3–16

  11. Chen WH, Tu YJ, Herng-Kuang S (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 88:2726–2734

    Article  CAS  Google Scholar 

  12. Caddick S (1995) Microwave-assisted organic reactions. Tetrahedron 51(38):10403–10432

    Article  CAS  Google Scholar 

  13. Ooshima H, Aso K, Harano Y (1984) Microwave treatment of cellulosic materials for their enzymatic hydrolysis. Biotechnol Lett 6(5):289–294

    Article  CAS  Google Scholar 

  14. U.S Department of Energy (2007) Increasing yield and quality of low-temperature, low-alkali Kraft cooks with microwave pretreatment. Industrial Technologies Program. http://infohouse.p2ric.org/ref/49/48158.pdf Accessed 30.9.2015

  15. Binod P, Satyanagalakshmi K, Sindhu R, Usha Janu K, Sukumaran RK, Pandley A (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew Energy 37:109–116

    Article  CAS  Google Scholar 

  16. Lu X, Xi B, Zhang Y, Angelidaki I (2011) Microwave pretreatment of rape straw for bioethanol production: focus on energy efficiency. Bioresour Technol 102:7937–7940

    Article  CAS  PubMed  Google Scholar 

  17. Saha BC, Biswas A, Cotta MA (2008) Microwave pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. J Biobased Mater Bioenergy 2:210–217

    Article  Google Scholar 

  18. Keshwani DR, Cheng JJ, Burns JC, Li L, Chiang V (2007) Microwave pretreatment of switchgrass to enhance enzymatic hydrolysis. ASABE Annual Meeting Paper No. 077127

  19. Lundqvist J, Teleman A, June L, Zacchi G, Dahlman O, Tjerneld F, Stålbrand H (2002) Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr Polym 48:29–39

    Article  CAS  Google Scholar 

  20. Xue BL, Li MF, Xu F, Sun RC, Joens G (2012) Microwave-enhanced alkali treatment of Pinus yunnanensis: physiochemical characterization of the dissolved lignins. Ind Crop Prod 36:209–216

    Article  CAS  Google Scholar 

  21. Azuma J, Tanaka F, Koshijima T (1984) Enhancement of enzymatic susceptibility of lignocellulosic wastes by microwave irradiation. J Ferment Technol 62(4):377–384

    CAS  Google Scholar 

  22. Jensen JR, Morinelly JE, Gossen KR, Broseur-Campbell MJ, Shonnard DR (2010) Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam and switchgrass. Bioresour Technol 101:2317–2325

    Article  CAS  PubMed  Google Scholar 

  23. Yemis O, Mazza G (2011) Acid-catalysed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour Technol 102:7371–7378

    Article  CAS  PubMed  Google Scholar 

  24. Gong G, Liu D, Huang Y (2010) Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosyst Eng 107:67–73

    Article  Google Scholar 

  25. Sluiter A., Hames B, Ruiz R., Scarlata C, Sluiter J, Templeton D, Crocker D (2010) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618

  26. Yang M, Kuittinen S, Zhang J, Keinänen M, Pappinen A (2013) Effect of d ilute acid pretreatment on the conversion of barley straw with grains to fermentable sugars. Bioresour Technol 146:444–450

    Article  CAS  PubMed  Google Scholar 

  27. Hayes DJM (2012) Development of near infrared spectroscopy models for the quantitative prediction of the lignocellulose components of wet Miscanthus samples. Bioresour Technol 119:393–405

    Article  CAS  PubMed  Google Scholar 

  28. Chum HL, Johnson DK, Black SK, Overend RP (1990) Pretreatment-catalyst effects of the combined severity parameter. Appl Biochem Biotechnol 24(25):1–14

    Article  Google Scholar 

  29. Palm M, Zacchi G (2003) Extraction of hemicellulosic oligosaccharides from Norway spruce using microwave oven or steam treatment. Biomacromolecules 4:617–623

    Article  CAS  PubMed  Google Scholar 

  30. Monavari S, Galbe M, Zacchi G (2009) Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresour Technol 100:6312–6316

    Article  CAS  PubMed  Google Scholar 

  31. Lan TQ, Gleisner R, Zhu JY, Dien BS, Hector RE (2013) High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation. Bioresour Technol 127:291–297

    Article  CAS  PubMed  Google Scholar 

  32. Larsson S, Palmqvist E, Hahn-Hägerdahl B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzym Microb Technol 24:151–159

    Article  CAS  Google Scholar 

  33. Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity—relating pH to biomatrix opening. New Biotechnol 27(6):739–750

    Article  CAS  Google Scholar 

  34. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  35. Alén R (ed.) (2011) Biorefining of forest resources. Papermaking Science and Technology. Book 20. Bookwell

  36. Sjöström E (1981) Wood chemistry fundamentals and applications. Academic Press

  37. Kumar L, Chandra R, Chung PA, Saddler J (2010) Can the same steam pretreatment conditions be used for most softwoods to achieve good, enzymatic hydrolysis and sugar yields? Bioresour Technol 101:7827–7833

    Article  CAS  PubMed  Google Scholar 

  38. Pan XJ, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 121–124:1069–1079

    Article  PubMed  Google Scholar 

  39. Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98:737–746

    Article  CAS  PubMed  Google Scholar 

  40. Wu MM, Chang K, Gregg DJ, Boussaid A, Beatson RP, Saddler JN (1999) Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwoods. Appl Biochem Biotechnol 77(9):47–54

    Article  Google Scholar 

  41. Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103:201–208

    Article  CAS  PubMed  Google Scholar 

  42. Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K (2011) Inhibition of enzymatic hydrolysis by residual lignins from softwood—study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 108(12):2823–2834. doi:10.1002/bit.23242

    Article  CAS  PubMed  Google Scholar 

  43. Yang B, Wyman CE (2006) BSA Treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94(4):611–617

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was part of the “Renewable transportation fuels in North Karelia—development of expertise” project funded by the European Structural Funds and the “New business opportunities for bioenergy producers” project funded by the European Agricultural Fund for Rural Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kuittinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuittinen, S., Rodriguez, Y.P., Yang, M. et al. Effect of Microwave-Assisted Pretreatment Conditions on Hemicellulose Conversion and Enzymatic Hydrolysis of Norway Spruce. Bioenerg. Res. 9, 344–354 (2016). https://doi.org/10.1007/s12155-015-9696-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9696-9

Keywords

Navigation