Skip to main content
Log in

Planning target volume assessment in lung tumors during 3D conformal radiotherapy by means of an aSi electronic portal imaging device in cine mode

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

The major uncertainties in treating lung cancer are the repositioning errors and respiratory lung tumor motion. Typically, margins are added to the clinical target volume (CTV) to obtain a planning target volume (PTV) allowing the accommodation of such uncertainties. We want to test a new technique to assess the adequacy of the chosen PTV using an aSi electronic portal imaging device (EPID).

Methods

Four patients affected by lung cancer and treated by radical 3D conformal radiotherapy (3DRT) were studied. During treatment the EPID was used in cine mode acquisition: acquired images were used to the aim.

Results and conclusions

Treatment monitoring with an EPID in cine mode is shown to be a clinically feasible and useful tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Jiang SB (2006) Radiotherapy of mobile tumors. Semin Radiat Oncol 16:239–248

    Article  PubMed  CAS  Google Scholar 

  2. Murphy MJ (2004) Tracking moving organs in real time. Semin Radiat Oncol 1:91–100

    Article  Google Scholar 

  3. Schweikard A, Shiomi H, Adler J (2004) Respiration tracking in radiosurgery. Med Phys 10:2738–2741

    Article  Google Scholar 

  4. Shirato H, Seppenwoolde Y, Kitamura K et al (2004) Intrafractional tumor motion: lung and liver. Semin Radiat Oncol 1:10–18

    Article  Google Scholar 

  5. Berbeco RI, Jiang SB, Sharp GC et al (2004) Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic X-ray systems with flat-panel detectors. Phys Med Biol 2:243–255

    Article  Google Scholar 

  6. International Commission on Radiation Units and Measurements (1999) ICRU 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50). International Commission on Radiation Units and Measurements, Bethesda

  7. Halperin R, Wilson R, Field M et al (1998) Setup reproducibility in radiation therapy for lung cancer: a comparison between T-bar and expanded foam immobilization devices. Int J Radiat Oncol Biol Phys 43:211–216

    Article  Google Scholar 

  8. Sixel KE, Ruschin M, Tirona R, Cheung PCF (2003) Digital fluoroscopy to quantify lung tumor motion: potential for patient-specific planning target volumes. Int J Radiat Oncol Biol Phys 57:717–723

    Article  PubMed  Google Scholar 

  9. Hof H, Rhein B, Haering P, Kopp-Schneider A, Debus J, Herfarth K et al (2009) 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: comparison with a conventional technique using individual margins. Radiat Oncol 93:419–423

    Article  Google Scholar 

  10. Berbeco RI, Hacker F, Ionascu D, Mamon HJ (2007) Clinical feasibility of using an EPID in cine mode for image-guided verification of stereotactic body radiotherapy Int. J. Radiat Oncol Biol Phys 69:258–266

    Article  Google Scholar 

  11. Berbeco RI, Mostafavi H, Sharp GC, Jiang SB (2005) Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers. Phys Med Biol 50:4481–4490

    Article  PubMed  Google Scholar 

  12. Berbeco RI, Neicu T, Rietzel E et al (2005) A technique for respiratory-gated radiotherapy treatment verification with an EPID in cine mode. Phys Med Biol 16:3669–3679

    Article  Google Scholar 

  13. Laurent F, Latrabe V, Vergier B, Montaudon M, Vernejoux JM, Dubrez J et al (2000) CT-guided transthoracic needle biopsy of pulmonary nodules smaller than 20 mm: results with an automated-gauge coaxial cutting needle. Clin Radiol 55:281–287

    Article  PubMed  CAS  Google Scholar 

  14. Arslan S, Yilmaz A, Bayramqurler B, Uzman O, Nver E, Akkaya E et al (2002) CT-guided transthoracic fine needle aspiration of pulmonary lesions: accuracy and complications in 294 patients. Med Sci Monit 8:493–497

    Google Scholar 

  15. Geraghty PR, Kee ST, Mcfarlane G, Razavi MK, Sze DY, Dake MD et al (2003) CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate Radiology 229:475–481

    Google Scholar 

  16. Topal U, Ediz B (2003) Transthoracic needle biopsy: factors effecting risk of pneumothorax. Eur J Radiol 48:263–267

    Article  PubMed  Google Scholar 

  17. Arimura H, Anai S, Yoshidome S, Nakamura K, Shioyama Y, Nomoto S, Honda H, Onizuka Y, Terashima H (2007) Computerized method for measurement of displacement vectors of target positions on EPID cine images in stereotactic radiotherapy. Proc SPIE 6512:65121U-1-8

    Google Scholar 

  18. Xiaoli T, Tong L, Steve J (2009) A feasibility study of treatment verification using EPID cine images for hypofractionated lung radiotherapy. Phys Med Biol 54:S1–S8

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Caivano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caivano, R., Clemente, S., Fiorentino, A. et al. Planning target volume assessment in lung tumors during 3D conformal radiotherapy by means of an aSi electronic portal imaging device in cine mode. Clin Transl Oncol 15, 638–642 (2013). https://doi.org/10.1007/s12094-012-0984-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-012-0984-y

Keywords

Navigation