Skip to main content
Log in

Significance of telomere capture in myelodysplastic syndromes

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Addition of telomeres to the ends of broken chromosomes has been observed in many malignant cells through the capture of the ends of other chromosomes as a result of nonreciprocal translocations. In this study, we aimed to evaluate the percentage of nuclei with telomere capture (TC%) as a prognostic marker in myelodysplastic syndromes (MDS) patients. This study included 45 newly diagnosed MDS patients, 36 cases with denovo MDS and 9 cases with therapy-related MDS, and another 35 apparently healthy volunteers as a control group. Telomere capture percentage was investigated with fluorescent in situ hybridization technique using a probe for 15qter. We found that median TC% rate was significantly increased in those with bad cytogenetic abnormalities, patients with blast cells >10 % in BM, and patients categorized as high risk according to WHO and IPSS classification; also, there was a significant negative correlation with progression-free survival. Telomere capture serves as a useful marker for the assessment of MDS patient’s risk, and also it had a clinical importance for the early detection of disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Béné MC, Feuillard J, Hussonc B, Maynadiéd M. Immunophenotyping of myelodysplasia. Clin Appl Immunol Rev. 2005;5:133–48.

    Article  Google Scholar 

  2. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51:189–99.

    Article  PubMed  CAS  Google Scholar 

  3. Greenberg P, Cox C, Lebeau MM, Fenaux P, Morel P, Jacobs RA, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–86.

    PubMed  CAS  Google Scholar 

  4. Pfeilstocker M, Reisner R, Nosslinger T, Gruner H, Nowotny H, Tuchler H. Cross-validation of prognostic scores in myelodysplastic syndromes on 386 patients from a single institution confirms importance of cytogenetics. Br J Haematol. 1999;106:455–63.

    Article  PubMed  CAS  Google Scholar 

  5. Germing U, Strupp C, Kuendgen A, Isa S, Knipp S, Hildebrandt B, Giagounidis A, Aul C, Gattermann N, Haas R. Prospective validation of the WHO proposals for the classification of myelodysplastic syndromes. Haematologica. 2006;91:1596–604.

    PubMed  Google Scholar 

  6. Cesana C, Klersy C, Brando B, Nosari A, Scarpati B, Scampini L, et al. Prognostic value of circulating CD34+ cells in myelodysplastic syndromes. Leuk Res. 2008;32:1715–21.

    Article  PubMed  CAS  Google Scholar 

  7. Meltzer PS, Guan X, Trent JM. Telomere capture stabilizes chromosome breakage. Nat Genet. 1993;4:252–5.

    Article  PubMed  CAS  Google Scholar 

  8. Iwama H, Tauchi T, Ohyashiki K, Ohyashiki JH, Hayashi S, Yahata N, Ando K, Toyama K, Hoshika A, Takasaki M, MoriShay JW. Telomeric length and telomerase activity vary with age in peripheral blood cells obtained from normal individuals. Hum Genet. 1998;102:397–402.

    Article  PubMed  CAS  Google Scholar 

  9. Wilkie AOM, Lamb J, Harris PC, Finney RD, Higgs DR. A truncated human chromosome 16 associated with a thalassaemia is stabilized by addition of telomeric repeat (TTAGGG). Nature. 1990;346:868–71.

    Article  PubMed  CAS  Google Scholar 

  10. Flint J, Craddock CF, Villegas A, Bentley DP, Williams HJ, Galanello R, Cao A, Wood WG, Ayyub H, Higgs DR. Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet. 1994;55:505–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Ning Y, Liang JC, Nagarajan I, Schröck E, Ried T. Characterizationof 5q deletions by subtelomeric probes and spectral karyotyping. Cancer Genet Cytogenet. 1998;103:170–6.

    Article  PubMed  CAS  Google Scholar 

  12. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA, Bloomfield CD. The World Health Organization classification of neoplastic of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting—Airlie House. Hematol J. 2000;1:53–66.

    Article  PubMed  CAS  Google Scholar 

  13. Stampfer M, Yaswen P. Culture models of human mammary epithelial cell transformation. J Mammary Gland Biol Neoplasia. 2000;5:365–78.

    Article  PubMed  CAS  Google Scholar 

  14. Brown WRA, MacKinnon PJ, Villasante A, Spurr N, Buckle VJ, Dobson MJ. Structure and polymorphism of human telomere associated DNA. Cell. 1990;63:119–32.

    Article  PubMed  CAS  Google Scholar 

  15. Ballif BC, Kashork CD, Shaffer LG. Mechanisms of cytogenetically defined terminal deletions using chromosome-specific subtelomeric probes. Eur J Hum Genet. 2000;8:764–70.

    Article  PubMed  CAS  Google Scholar 

  16. Serakinci N, Ostergaard M, Larsen H, Madsen B, Pedersen B, Koch J. Multiple telomeric aberrations in a telomerase-positive leukemia patient. Cancer Genet Cytogenet. 2002;138:11–6.

    Article  PubMed  CAS  Google Scholar 

  17. Rasnick D, Duesberg P. How aneuploidy affects metabolic control and causes cancer. Biochem J. 1999;340:621–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Amiel A, Goldzak G, Gaber E, Yosef G, Fejgin MD, Yukla M, Lishner M. Random aneuploidy and telomere capture in chronic lymphocytic leukemia and chronic myeloid leukemia patients. Genet Cytogenet. 2005;163:12–6.

    Article  CAS  Google Scholar 

  19. Bittman LG, Amiel A, Hadary R, Fejgin MD, Quitt M, Cohen YK. Telomere capture in hepatitis C infection. Cancer Genet Cytogenet. 2009;191:63–6.

    Article  Google Scholar 

  20. Ohyashiki JH, Iwama H, Yahata N, Ando K, Hayashi S, Shay JW, Ohyashiki K. Telomere stability is frequently impaired in high groups of patients with myelodysplastic syndromes. Clin Cancer Res. 1999;5:1155–60.

    PubMed  CAS  Google Scholar 

  21. Johansson B, Mertens F, Mitelman F. Primary vs. secondary neoplasia-associated chromosomal abnormalities—balanced rearrangements vs genomic imbalances? Genes Chromosomes Cancer. 1996;16:155–63.

    Article  PubMed  CAS  Google Scholar 

  22. Sieglová Z, Žilovcová S, Cermák J, Ríhová H, Březinová D, Dvořáková R, Marková M, Maaloufová J, Sajdová J, Březinová J, Zemanová Z, Michalová K. Dynamics of telomere erosion and its association with genome instability in myelodysplastic syndromes (MDS) and acute myelogenous leukemia arising from MDS: a marker of disease prognosis. Leuk Res. 2004;29:1013–21.

    Article  Google Scholar 

  23. Slugboom PE, Droog S, Boomsma GI. Genetic determination of telomere size in humans: a twin study of three age groups. Am J Hum Genet. 1993;52:661–7.

    Google Scholar 

Download references

Acknowledgments

We gratefully thank all participating subjects for cooperation and support to this study. We also acknowledge Prof. Maha M Atfy for her assistance and guidance.

Conflict of interest

The authors have no conflicts of interest or funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hany A. Labib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labib, H.A., Elshorbagy, S. & Elantonuy, N.G. Significance of telomere capture in myelodysplastic syndromes. Med Oncol 31, 216 (2014). https://doi.org/10.1007/s12032-014-0216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0216-0

Keywords

Navigation