Skip to main content
Log in

Bionanofabrication by Near-Field Optical Methods

  • Published:
NanoBiotechnology

Abstract

Near-field optical methods offer unique potential in nanofabrication, because they provide the capacity to initiate highly selective chemical transformations with nanometer scale precision. The basic principles behind scanning near-field photolithography (SNP), in which a scanning near-field optical microscope coupled to a UV laser is used to initiate surface chemical reactions, are described. The fundamental principles underlying the patterning of self-assembled monolayers by SNP are described, and the resolution limits and the basic principles that enable routine achievement of sub-50 nm resolution are discussed. Illustrations are provided of the application of SNP to the patterning of protein molecules on gold surfaces. The patterning of molecular adsorbates on oxide surfaces, including the fabrication of highly miniaturized arrays of DNA on silicon dioxide, is also described. It is argued that SNP holds great promise for the organization of biomolecules on nanometer length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev 2005;105:1547–62.

    Article  PubMed  CAS  Google Scholar 

  2. Lee K-B, Park S-J, Mirkin CA, Smith JC, Mrksich M. Protein nanoarrays generated by dip-pen nanolithography. Science 2002;295:1702–5, (March 1).

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Lee K-B, Lim J-H, Mirkin CA. Protein nanostructures formed via direct-write dip-pen nanolithography. J Am Chem Soc 2003;125:5588–9.

    Article  PubMed  CAS  Google Scholar 

  4. Liu G-Y, Amro NA. Positioning protein molecules on surfaces: a nanoengineering approach to supramolecular chemistry. Proc Natl Acad Sci U S A 2002;99:5165–70.

    Article  PubMed  ADS  CAS  Google Scholar 

  5. Nuraje N, Banerjee IA, MacCuspie RI, Yu L, Matsui H. Biological bottom-up assembly of antibody nanotubes on patterned antigen arrays. J Am Chem Soc 2004;126:8088–9.

    Article  PubMed  CAS  Google Scholar 

  6. Gu J, Yam CM, Li S, Cai C. Nanometric protein arrays on protein-resistant monolayers on silicon surfaces. J Am Chem Soc 2004;126(26):8098–9.

    Article  PubMed  CAS  Google Scholar 

  7. Hyun J, Ahn SJ, Lee WK, Chilkoti A, Zauscher S. Molecular recognition-mediated fabrication of protein nanostructures by dip-pen nanolithography. Nano Lett 2002;2(11):1203–7.

    Article  ADS  CAS  Google Scholar 

  8. Falconnet D, Pasqui D, Park S, Eckert R, Schift H, Gobrecht J, et al. A novel approach to produce protein nanopatterns by combining nanoimprint lithography and molecular self-assembly. Nano Lett 2004;4:1909–14.

    Article  ADS  CAS  Google Scholar 

  9. Liu J, Liu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 2006;45:90–4.

    Article  CAS  Google Scholar 

  10. Liu M, Amro NA, Chow CS, Liu G-Y. Production of nanostructures on DNA surfaces. Nano Lett 2002;2:863–7.

    Article  ADS  CAS  Google Scholar 

  11. Zhou D, Shinniah K, Abell C, Rayment T. Label-free detection of DNA hybridization at the nanoscale: a highly sensitive and selective approach using atomic force microscopy. Angew Chem Int Ed 2003;42:4934–7.

    Article  CAS  Google Scholar 

  12. Demers L, Ginger DS, Park S-J, Li Z, Chung S-W, Mirkin CA. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 2002;296:1836–8.

    Article  PubMed  ADS  CAS  Google Scholar 

  13. Chow DC, Lee W-K, Zauscher S, Chilkoto A. Enzymatic fabrication of DNA nanostructures: extension of self-assembled oligonucleotide monolayer on gold arrays. J Am Chem Soc 2005;127:14122–3.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang H, Lee K-B, Li Z, Mirkin CA. Biofunctionalized nanoarrays of inorganic structures prepared by dip-pen nanolithography. Nanotechnology 2003;14:1113–7.

    Article  ADS  CAS  Google Scholar 

  15. Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002;297:1536–40.

    Article  PubMed  ADS  CAS  Google Scholar 

  16. Park S-J, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science 2002;295:1503–6.

    Article  PubMed  ADS  CAS  Google Scholar 

  17. Nam J-M, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003;301:1884–6.

    Article  PubMed  ADS  CAS  Google Scholar 

  18. Cheung CL, Camarero JA, Woods BW, Lin T, Johnson JE, De Yoreo JJ. Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J Am Chem Soc 2003;125:6848–9.

    Article  PubMed  CAS  Google Scholar 

  19. Jonsson MP, Jonsson P, Dahlin AB, Hook F. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied wit a new nanoplasmonic sensor template. Nano Lett 2007;7:3462–8.

    Article  PubMed  ADS  CAS  Google Scholar 

  20. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 2003;299:682–6.

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Korlach J, Marks PJ, Cicero RL, Gray JJ, Murphy DL, Roitman DB, et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide structures. Proc Natl Acad Sci U S A 2008;105:1176–81.

    Article  PubMed  ADS  CAS  Google Scholar 

  22. Gunnarsson A, Jonsson P, Marie R, Tegenfeldt JO, Hook F. Single-molecule detection and mismatch discrimination of unlabeled DNA targets. Nano Lett 2008;8:183–8.

    Article  PubMed  ADS  CAS  Google Scholar 

  23. Kaholek M, Lee W-K, LaMattina B, Caster KC, Zauscher S. Fabrication of stimulus-responsive nanopatterned polymer brushes by scanning probe lithography. Nano Lett 2004;4:373–6.

    Article  ADS  CAS  Google Scholar 

  24. Prime KL, Whitesides GM. Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 1991;252:1164–7.

    Article  ADS  CAS  Google Scholar 

  25. Dicke C, Haehner G. pH-Dependent force spectroscopy of tri(ethylene glycol)- and methyl-terminated self-assembled monolayers adsorbed on gold. J Am Chem Soc 2001;124(42):12619–25.

    Article  CAS  Google Scholar 

  26. Mrksich M, Sigal GB, Whitesides GM. Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold. Langmuir 1995;11(11):4383–5.

    Article  CAS  Google Scholar 

  27. Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE. Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J Phys Chem B 1998;102(2):426–36.

    Article  CAS  Google Scholar 

  28. Ostuni E, Chapman RG, Holmlin ER, Takayama S, Whitesides GM. A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir 2001;17(18):5605–20.

    Article  CAS  Google Scholar 

  29. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA. Dip pen nanolithography. Science 1999;283:661.

    Article  PubMed  CAS  Google Scholar 

  30. Hong S, Zhu J, Mirkin CA. Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science 1999;286:523–5.

    Article  PubMed  CAS  Google Scholar 

  31. Nam J-M, Han SW, Lee K-B, Liu X, Ratner MA, Mirkin CA. Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew Chem Int Ed 2004;43:1246–9.

    Article  CAS  Google Scholar 

  32. Amro NA, Xu S, Liu G-Y. Patterning surfaces using tip-directed displacement and assembly. Langmuir 2000;16:3006–9.

    Article  CAS  Google Scholar 

  33. Novotny L, Hecht B. Principles of Nano-Optics. Cambridge, UK: Cambridge University Press; 2006.

  34. Hell SW. Far-field optical nanoscopy. Science 2007;316:1153–8.

    Article  PubMed  ADS  CAS  Google Scholar 

  35. Willig KI, Rizzoli SO, Westphal V, Hell SW. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006;440:935–9.

    Article  PubMed  ADS  CAS  Google Scholar 

  36. Synge EH. A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos Mag 1928;6:356–62.

    CAS  Google Scholar 

  37. Synge EH. A microscopic method. Philos Mag 1931;11:65–80.

    CAS  Google Scholar 

  38. Synge EH. An application of piezo-electricity to microscopy. Philos Mag 1932;13:297–300.

    Google Scholar 

  39. Lewis A, Isaacson M, Harootonian A, Muray A. Development of a 500 A spatial resolution light microscope. Ultramicroscopy 1984;13:227–32.

    Article  Google Scholar 

  40. Pohl DW, Denk W, Lanz M. Optical stethoscopy: image recording with resolution lambda/20. Appl Phys Lett 1984;44:651–3.

    Article  ADS  Google Scholar 

  41. Betzig E, Trautman JK. Near-field optics: microscopy, spectroscopy and surface modification beyond the diffraction limit. Science 1992;257:189–95.

    Article  PubMed  ADS  CAS  Google Scholar 

  42. Betzig E, Finn PL, Trautman JK. Combined shear force and near-field scanning optical microscopy. Appl Phys Lett 1992;60:2484–6.

    Article  ADS  CAS  Google Scholar 

  43. Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M. Appl Phys Lett 1992;60:2957–9.

    Article  ADS  CAS  Google Scholar 

  44. Karrai K, Grober RD. Piezoelectric tip-sample distance control for near field optical microscopes. Appl Phys Lett 1995;66:1842–4.

    Article  ADS  CAS  Google Scholar 

  45. Dunn RC. Near-field scanning optical microscopy. Chem Rev 1999;99:2891–927.

    Article  PubMed  CAS  Google Scholar 

  46. Lewis A, Taha H, Strnkovski A, Manevitch A, Khatchatouriants A, Dekhter R, et al. Near-field optics: from subwavelength illumination to nanometric shadowing. Nat Biotechnol 2003;21:1378–86.

    Article  PubMed  CAS  Google Scholar 

  47. Krausch G, Wegscheider S, Kirsch A, Bielefeldt H, Meiners JC, Mlynek J. Near-field microscopy and lithography with uncoated fiber tips: a comparison. Opt Commun 1995;119:283–8.

    Article  ADS  CAS  Google Scholar 

  48. Krausch G, Mlynek J. Surface modification in the optical near field. Microelectron Eng 1995;32:219–28.

    Article  Google Scholar 

  49. Smolyaninov I, Mazzoni DL, Davis CC. Near-field direct-write ultraviolet photolithography and shear-force microscopy studies of the lithographic process. Appl Phys Lett 1995;67:3859–61.

    Article  ADS  CAS  Google Scholar 

  50. Fujihara M, Monobe H, Muramatsu H, Ataka T. Near-field optical microscopic recording on Langmuir–Blodgett (LB) films and chemically modified surfaces. Ultramicroscopy 1995;57:176–9.

    Article  Google Scholar 

  51. Riehn R, Charas A, Morgado J, Cacialli F. Near-field optical lithography of a conjugated polymer. Appl Phys Lett 2003;82:526–8.

    Article  ADS  CAS  Google Scholar 

  52. Jiang S, Ichihashi J, Monobe H, Fujihara M. Highly localised photochemical processes in LB films of photochromic material by using a photon scanning tunnelling microscope. Opt Commun 1994;106:173–7.

    Article  ADS  CAS  Google Scholar 

  53. Zeisel D, Netteshiem S, Dutoit B, Zenobi R. Pulsed laser-induced desorption and optical imaging on a nanometer scale with scanning near-field microscopy using chemically etched fiber tips. Appl Phys Lett 1996;68:2491–3.

    Article  ADS  CAS  Google Scholar 

  54. Imura R, Shintani T, Nakamura K, Hosaka S. Nanoscale modification of phase change materials with near-field light. Microelectron Eng 1996;30:387–90.

    Article  CAS  Google Scholar 

  55. Hosaka S, Kikukawa A, Koyanagi H, Shintani T, Miyamoto M, Nakamura K, et al. SPM-based data storage for ultrahigh density recording. Nanotechnology 1997;8:A58–62.

    Article  ADS  CAS  Google Scholar 

  56. Wei PK, Hsu J, Fann WS, Hseih BR. Synth Met 1997;85:1421.

    Article  CAS  Google Scholar 

  57. DeAro JA, Gupta R, Heeger AJ, Buratto SK. Nanoscale oxidative patterning and manipulation of conjugated polymer thin films. Synth Met 1999;102:865–8.

    Article  CAS  Google Scholar 

  58. Credo GM, Lowman GM, deAro JA, Carson PJ, Winn DL, Buratto SK. Probing nanoscale photo-oxidation in organic films using spatial hole burning scanning optical microscopy. J Chem Phys 2000;112:7864–72.

    Article  ADS  CAS  Google Scholar 

  59. Huang J, Hemminger JC. Photooxidation of thiols in self-assembled monolayers on gold. J Am Chem Soc 1993;115:2243–3343.

    Google Scholar 

  60. Tarlov MJ, Burgess DRF, Gillen G. UV photopatterning of alkanethiolate monolayers self-assembled on gold and silver. J Am Chem Soc 1993;115:5305–6.

    Article  CAS  Google Scholar 

  61. Brewer NJ, Rawsterne RE, Kothari S, Leggett GJ. Oxidation of self-assembled monolayers by UV light with a wavelength of 254 nm. J Am Chem Soc 2001;123:4089–90.

    Article  PubMed  CAS  Google Scholar 

  62. Brewer NJ, Janusz SJ, Critchley K, Evans SD, Leggett GJ. Photo-oxidation of self-assembled monolayers by exposure to light of wavelength 254 nm: a static SIMS study. J Phys Chem B 2005;109:11247.

    Article  PubMed  CAS  Google Scholar 

  63. Hutt DA, Leggett GJ. Dependence of rates of photo-oxidation of self-assembled monolayers on adsorbate alkyl chain length. J Phys Chem 1996;100:6657.

    Article  CAS  Google Scholar 

  64. Hutt DA, Cooper E, Leggett GJ. Structure and mechanism of photo-oxidation of self-assembled monolayers of alkylthiols on silver studied by XPS and static SIMS. J Phys Chem B 1998;102:174–84.

    Article  CAS  Google Scholar 

  65. Cooper E, Leggett GJ. Static SIMS studies of self-assembled monolayers: the influence of adsorbate chain length and terminal functional group on rates of photo-oxidation of alkylthiols on gold. Langmuir 1998;14:4795–801.

    Article  CAS  Google Scholar 

  66. Zhang Y, Terrill RH, Tanzer TA, Bohn PW. Ozonolysis is the primary cause of UV photooxidation of alkanethiolate monolayers at low irradiance. J Am Chem Soc 1998;120:2654–5.

    Article  CAS  Google Scholar 

  67. Norrod KL, Rowlen KL. Ozone-induced oxidation of self-assembled decanethiol: contributing mechanism for “photooxidation”. J Am Chem Soc 1998;120:2656–7.

    Article  CAS  Google Scholar 

  68. Scotchford CA, Cooper E, Downes S, Leggett GJ. Growth of human osteoblast-like cells on alkanethiol on gold self-assembled monolayers: the effect of surface chemistry. J Biomed Mater Res 1998;41:431–42.

    Article  PubMed  CAS  Google Scholar 

  69. Sun S, Chong KSL, Leggett GJ. Nanoscale molecular patterns fabricated by using scanning near-field optical lithography. J Am Chem Soc 2002;124:2414–5.

    Article  PubMed  CAS  Google Scholar 

  70. Carpick RW, Salmeron M. Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem Rev 1997;97(4):1163–94.

    Article  PubMed  CAS  Google Scholar 

  71. Leggett GJ, Brewer NJ, Chong KC. Friction force microscopy: towards quantitative analysis of molecular organisation with nanometre spatial resolution. Phys Chem Chem Phys 2005;7:1107–20.

    Article  CAS  PubMed  Google Scholar 

  72. Chong KSL, Sun S, Leggett GJ. Measurement of the kinetics of photo-oxidation of self-assembled monolayers using friction force microscopy. Langmuir 2005;21:3903–9.

    Article  PubMed  CAS  Google Scholar 

  73. Sun S, Leggett GJ. Matching the resolution of electron beam lithography by scanning near-field photolithography. Nano Lett 2004;4:1381.

    Article  ADS  CAS  Google Scholar 

  74. Montague M, Ducker RE, Chong KSL, Manning RJ, Rutten FJM, Davies MC, et al. Fabrication of biomolecular nanostructures by scanning near-field photolithography of oligo(ethylene glycol) terminated self-assembled monolayers. Langmuir 2007;23:7328–37.

    Article  PubMed  CAS  Google Scholar 

  75. Muhlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW. Resonant optical antennas. Science 2005;308:1607–9.

    Article  PubMed  ADS  CAS  Google Scholar 

  76. Sundaramurthy A, Crozier KB, Kino GS, Fromm DP, Schuck PJ, Moerner WE. Field enhancement and gap-dependent resonance in a system of two opposing tip-to-gap Au nanotriangles. Phys Rev B 2005;72:165409.

    Article  ADS  CAS  Google Scholar 

  77. Sanchez EJ, Novotny L, Xie XS. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 1999;82:4014–7.

    Article  ADS  CAS  Google Scholar 

  78. Bouhelier A, Beversluis M, Hartschuh A, Novotny L. Near-field second harmonic generation induced by local field enhancement. Phys Rev Lett 2003;90:013903.

    Article  PubMed  ADS  CAS  Google Scholar 

  79. Anderson N, Hartschuh A, Cronin S, Novotny L. Nanoscale vibrational analysis of single-walled carbon nanotubes. J Am Chem Soc 2005;127:2533–7.

    Article  PubMed  CAS  Google Scholar 

  80. Novotny L, Stranick SJ. Near-field optical microscopy and spectroscopy with pointed probes. Annu Rev Phys Chem 2006;57:303–31.

    Article  PubMed  CAS  ADS  Google Scholar 

  81. Xia Y, Zhao X-M, Kim E, Whitesides GM. A selective etching solution for use with patterned self-assembled monolayers of alkanethiolates on gold. Chem Mater 1995;7:2332.

    Article  CAS  Google Scholar 

  82. Xia Y, Kim E, Whitesides GM. Microcontact printing of alkanethiols on silver and its application in microfabrication. J Electrochem Soc 1996;143:1070.

    Article  CAS  Google Scholar 

  83. Xia Y, Whitesides GM. Soft lithography. Angew Chem Int Ed 1998;37:550–75.

    Article  CAS  Google Scholar 

  84. Sun S, Leggett GJ. Generation of nanostructures by scanning near-field photolithography of self-assembled monolayers and wet chemical etching. Nano Lett 2002;2:1223–7.

    Article  ADS  CAS  Google Scholar 

  85. Sun S, Chong KSL, Leggett GJ. Photopatterning of self-assembled monolayers at 244 nm and applications to micro- and nano-lithography. Nanotechnol 2005;16:1798–808.

    Article  ADS  CAS  Google Scholar 

  86. Ducker RE, Leggett GJ. A mild etch for the fabrication of three-dimensional nanostructures in gold. J Am Chem Soc 2006;128:392–3.

    Article  PubMed  CAS  Google Scholar 

  87. Nabok A, Heriot SY, Richardson TH. Optical study of Langmuir–Schaeffer films of gold colloid nanoparticles. Phys Status Solidi B 2005;242:797.

    Article  ADS  CAS  Google Scholar 

  88. Sun S, Mendes P, Critchley K, Diegoli S, Hanwell M, Evans SD, et al. Fabrication of gold micro- and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. Nano Lett 2006;6:345–50.

    Article  PubMed  ADS  CAS  Google Scholar 

  89. Iqbal P, Sun S, Hanwell MD, Attwood D, Leggett GJ, Preece JA, et al. Photochemical fabrication of three-dimensional micro- and nano-structured surfaces from a C60 monoadduct. J Mater Chem 2008;18:2016–21.

    Article  CAS  Google Scholar 

  90. Pale-Grosdemange C, Simon ES, Prime KL, Whitesides GM. Formation of self-assembled monolayers by chemisorption of derivatives of oligo(ethylene glycol) of structure HS(CH2)11(OCH2CH2)mOH on gold. J Am Chem Soc 1991;113(1):12–20.

    Article  CAS  Google Scholar 

  91. Patel N, Davies MC, Hartshorne M, Heaton RJ, Roberts CJ, Tendler SJ, et al. Immobilization of protein molecules onto homogeneous and mixed carboxylate-terminated self-assembled monolayers. Langmuir 1997;13(24):6485–90.

    Article  CAS  Google Scholar 

  92. Ducker RE, Janusz SJ, Sun S, Leggett GJ. One-step photochemical introduction of nanopatterned protein-binding functionalities to oligo(ethylene glycol) terminated self-assembled monolayers. J Am Chem Soc 2007;129:14842–3.

    Article  PubMed  CAS  Google Scholar 

  93. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, et al. Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 1995;374:517–21.

    Article  ADS  CAS  Google Scholar 

  94. Koepke J, Hu X, Muenke C, Schulten K, Michel H. The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 1996;4:581–97.

    Article  PubMed  CAS  Google Scholar 

  95. Reynolds NP, Janusz SJ, Escalante-Marun M, Timney J, Ducker RE, Olsen JD, et al. Directed formation of micro- and nanoscale patterns of functional light harvesting LH2 complexes. J Am Chem Soc 2007;129:14625–31.

    Article  PubMed  CAS  Google Scholar 

  96. Maoz R, Frydman E, Cohen SR, Sagiv J. “Constructive nanolithography”: inert monolayers as patternable templates for in-situ nanofabrication of metal–semiconductor–organic surface structures—a generic approach. Adv Mater 2000;12:725–31.

    Article  CAS  Google Scholar 

  97. Maoz R, Frydman E, Cohen SR, Sagiv J. Constructive nanolithography: site-defined silver self-assembly on nanoelectrochemically patterned monolayer surfaces. Adv Mater 2000;12:424–9.

    Article  CAS  Google Scholar 

  98. Sun S, Montague M, Critchley K, Chen M-S, Dressick WJ, Evans SD, et al. Fabrication of biological nanostructures by scanning near-field photolithography of chloromethylphenylsiloxane monolayers. Nano Lett 2006;6(1):29–33.

    Article  PubMed  ADS  CAS  Google Scholar 

  99. Miranda MA, Perez-Prieto J, Font-Sanchis E, Scaiano JC. Acc Chem Res 2001;34:717.

    Article  PubMed  CAS  Google Scholar 

  100. Sun S, Leggett GJ. Micrometer and nanometer scale photopatterning of self-assembled monolayers of phosphonic acids on aluminum oxide. Nano Lett 2007;7(12):3753–8.

    Article  ADS  CAS  Google Scholar 

  101. Vettiger P, Despont M, Drechsler U, Durig U, Haberle W, Lutwyche MI, et al. The “Millipede”—more than one thousand tips for future AFM data storage. IBM J Res Devel 2000;44:323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Leggett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leggett, G.J. Bionanofabrication by Near-Field Optical Methods. Nanobiotechnol 3, 223–240 (2007). https://doi.org/10.1007/s12030-008-9018-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-008-9018-9

Keywords

Navigation