Skip to main content
Log in

Activation of Aicda gene transcription by Pax5 in plasmacytoma cells

  • Immunology in Colorado
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Activation-induced deaminase (AID) is an enzyme responsible for somatic hypermutation and immunoglobulin heavy chain class switch recombination. Because AID causes double-stranded breaks in DNA, its expression is highly regulated and is normally restricted to germinal-center B cells. Dysregulated AID expression can lead to cancer as a result of AID-mediated chromosomal translocations. Many transcription factors including paired box protein 5 (Pax5) have been implicated in regulating the expression of Aicda, the gene encoding AID. In this study, we demonstrate that exogenous expression of Pax5 in a murine plasmacytoma cell line, 558LμM, leads to robust activation of endogenous Aicda transcription. Pax5 is known to initiate transcription through both its N-terminal-paired DNA-binding domain and its C-terminal-activation domain. Through mutational analysis, we demonstrate that Pax5 regulates Aicda transcription through its C-terminal-activation domain. Together, our work describes a novel system that will be useful for determining how Pax5 regulates Aicda transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102(5):553–63.

    Article  PubMed  CAS  Google Scholar 

  2. Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem. 1999;274(26):18470–6.

    Article  PubMed  CAS  Google Scholar 

  3. Dickerson SK, Market E, Besmer E, Papavasiliou FN. AID mediates hypermutation by deaminating single stranded DNA. J Exp Med. 2003;197(10):1291–6.

    Article  PubMed  CAS  Google Scholar 

  4. Maul RW, Saribasak H, Martomo SA, McClure RL, Yang W, Vaisman A, et al. Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nat Immunol. 2011;12(1):70–6.

    Article  PubMed  CAS  Google Scholar 

  5. Morgan HD, Dean W, Coker HA, Reik W, Petersen-Mahrt SK. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem. 2004;279(50):52353–60.

    Article  PubMed  CAS  Google Scholar 

  6. Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature. 2010;463(7284):1042–7.

    Article  PubMed  CAS  Google Scholar 

  7. Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463(7284):1101–5.

    Article  PubMed  CAS  Google Scholar 

  8. Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell. 2008;135(7):1201–12.

    Article  PubMed  CAS  Google Scholar 

  9. Peled JU, Kuang FL, Iglesias-Ussel MD, Roa S, Kalis SL, Goodman MF, et al. The biochemistry of somatic hypermutation. Annu Rev Immunol. 2008;26:481–511.

    Article  PubMed  CAS  Google Scholar 

  10. Gruber TA, Chang MS, Sposto R, Muschen M. Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven B-cell lineage acute lymphoblastic leukemia. Cancer Res. 2010;70(19):7411–20.

    Article  PubMed  CAS  Google Scholar 

  11. Marantidou F, Dagklis A, Stalika E, Korkolopoulou P, Saetta A, Anagnostopoulos A, et al. Activation-induced cytidine deaminase splicing patterns in chronic lymphocytic leukemia. Blood Cells Mol Dis. 2010;44(4):262–7.

    Article  PubMed  CAS  Google Scholar 

  12. Matsumoto Y, Marusawa H, Kinoshita K, Niwa Y, Sakai Y, Chiba T. Up-regulation of activation-induced cytidine deaminase causes genetic aberrations at the CDKN2b-CDKN2a in gastric cancer. Gastroenterology. 2010;139(6):1984–94.

    Article  PubMed  CAS  Google Scholar 

  13. Shinmura K, Igarashi H, Goto M, Tao H, Yamada H, Matsuura S, et al. Aberrant expression and mutation-inducing activity of AID in human lung cancer. Ann Surg Oncol. 2011;18(7):2084–92.

    Article  PubMed  Google Scholar 

  14. Endo Y, Marusawa H, Chiba T. Involvement of activation-induced cytidine deaminase in the development of colitis-associated colorectal cancers. J Gastroenterol. 2011;46(Suppl 1):6–10.

    Article  PubMed  CAS  Google Scholar 

  15. Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell. 2008;135(6):1028–38.

    Article  PubMed  CAS  Google Scholar 

  16. Robbiani DF, Bunting S, Feldhahn N, Bothmer A, Camps J, Deroubaix S, et al. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol Cell. 2009;36(4):631–41.

    Article  PubMed  CAS  Google Scholar 

  17. Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH, et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature. 2008;451(7180):841–5.

    Article  PubMed  CAS  Google Scholar 

  18. Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A, Nakahashi H, et al. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell. 2011;147(1):95–106.

    Article  PubMed  CAS  Google Scholar 

  19. Nutt SL, Kee BL. The transcriptional regulation of B cell lineage commitment. Immunity. 2007;26(6):715–25.

    Article  PubMed  CAS  Google Scholar 

  20. Ramirez J, Lukin K, Hagman J. From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr Opin Immunol. 2010;22(2):177–84.

    Article  PubMed  CAS  Google Scholar 

  21. Nutt SL, Heavey B, Rolink AG, Busslinger M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401(6753):556–62.

    Article  PubMed  CAS  Google Scholar 

  22. Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity. 2006;24(3):269–81.

    Article  PubMed  CAS  Google Scholar 

  23. Gonda H, Sugai M, Nambu Y, Katakai T, Agata Y, Mori KJ, et al. The balance between Pax5 and Id2 activities is the key to AID gene expression. J Exp Med. 2003;198(9):1427–37.

    Article  PubMed  CAS  Google Scholar 

  24. Oppezzo P, Dumas G, Lalanne AI, Payelle-Brogard B, Magnac C, Pritsch O, et al. Different isoforms of BSAP regulate expression of AID in normal and chronic lymphocytic leukemia B cells. Blood. 2005;105(6):2495–503.

    Article  PubMed  CAS  Google Scholar 

  25. Reiniger L, Bodor C, Bognar A, Balogh Z, Csomor J, Szepesi A, et al. Richter’s and prolymphocytic transformation of chronic lymphocytic leukemia are associated with high mRNA expression of activation-induced cytidine deaminase and aberrant somatic hypermutation. Leukemia. 2006;20(6):1089–95.

    Article  PubMed  CAS  Google Scholar 

  26. Tran TH, Nakata M, Suzuki K, Begum NA, Shinkura R, Fagarasan S, et al. B cell-specific and stimulation-responsive enhancers derepress Aicda by overcoming the effects of silencers. Nat Immunol. 2010;11(2):148–54.

    Article  PubMed  CAS  Google Scholar 

  27. Omori SA, Cato MH, Anzelon-Mills A, Puri KD, Shapiro-Shelef M, Calame K, et al. Regulation of class-switch recombination and plasma cell differentiation by phosphatidylinositol 3-kinase signaling. Immunity. 2006;25(4):545–57.

    Article  PubMed  CAS  Google Scholar 

  28. Lin KI, Angelin-Duclos C, Kuo TC, Calame K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol Cell Biol. 2002;22(13):4771–80.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang W, Bardwell PD, Woo CJ, Poltoratsky V, Scharff MD, Martin A. Clonal instability of V region hypermutation in the Ramos Burkitt’s lymphoma cell line. Int Immunol. 2001;13(9):1175–84.

    Article  PubMed  CAS  Google Scholar 

  30. Ruckerl F, Busse B, Bachl J. Episomal vectors to monitor and induce somatic hypermutation in human Burkitt-Lymphoma cell lines. Mol Immunol. 2006;43(10):1645–52.

    Article  PubMed  Google Scholar 

  31. Nakamura M, Kondo S, Sugai M, Nazarea M, Imamura S, Honjo T. High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int Immunol. 1996;8(2):193–201.

    Article  PubMed  CAS  Google Scholar 

  32. Hombach J, Tsubata T, Leclercq L, Stappert H, Reth M. Molecular components of the B-cell antigen receptor complex of the IgM class. Nature. 1990;343(6260):760–2.

    Article  PubMed  CAS  Google Scholar 

  33. Hagman J. Conveying the message: identification of Ig-alpha and Ig-beta as components of the B cell receptor complex. J Immunol. 2009;183(3):1503–4.

    Article  PubMed  CAS  Google Scholar 

  34. Maier H, Colbert J, Fitzsimmons D, Clark DR, Hagman J. Activation of the early B-cell-specific mb-1 (Ig-) Gene by Pax-5 Is dependent on an unmethylated Ets binding site. Mol Cell Biol. 2003;23(6):1946–60.

    Article  PubMed  CAS  Google Scholar 

  35. Maier H, Ostraat R, Parenti S, Fitzsimmons D, Abraham LJ, Garvie CW, et al. Requirements for selective recruitment of Ets proteins and activation of mb-1/Ig-alpha gene transcription by Pax-5 (BSAP). Nucleic Acids Res. 2003;31(19):5483–9.

    Article  PubMed  CAS  Google Scholar 

  36. Maier H, Ostraat R, Gao H, Fields S, Shinton SA, Medina KL, et al. Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat Immunol. 2004;5(10):1069–77.

    Article  PubMed  CAS  Google Scholar 

  37. Gao H, Lukin K, Ramirez J, Fields S, Lopez D, Hagman J. Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5. Proc Natl Acad Sci USA. 2009;106(27):11258–63.

    Article  PubMed  CAS  Google Scholar 

  38. Fitzsimmons D, Hodsdon W, Wheat W, Maira SM, Wasylyk B, Hagman J. Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary complexes on a B-cell-specific promoter. Genes Dev. 1996;10(17):2198–211.

    Article  PubMed  CAS  Google Scholar 

  39. Fields S, Ternyak K, Gao H, Ostraat R, Akerlund J, Hagman J. The ‘zinc knuckle’ motif of Early B cell Factor is required for transcriptional activation of B cell-specific genes. Mol Immunol. 2008;45(14):3786–96.

    Article  PubMed  CAS  Google Scholar 

  40. Dorfler P, Busslinger M. C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8. EMBO J. 1996;15(8):1971–82.

    PubMed  CAS  Google Scholar 

  41. Nutt SL, Morrison AM, Dorfler P, Rolink A, Busslinger M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 1998;17(8):2319–33.

    Article  PubMed  CAS  Google Scholar 

  42. Eberhard D, Jimenez G, Heavey B, Busslinger M. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 2000;19(10):2292–303.

    Article  PubMed  CAS  Google Scholar 

  43. Kozmik Z, Wang S, Dorfler P, Adams B, Busslinger M. The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol Cell Biol. 1992;12(6):2662–72.

    PubMed  CAS  Google Scholar 

  44. Nutt SL, Urbanek P, Rolink A, Busslinger M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 1997;11(4):476–91.

    Article  PubMed  CAS  Google Scholar 

  45. Dedeoglu F, Horwitz B, Chaudhuri J, Alt FW, Geha RS. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFkappaB. Int Immunol. 2004;16(3):395–404.

    Article  PubMed  CAS  Google Scholar 

  46. Yadav A, Olaru A, Saltis M, Setren A, Cerny J, Livak F. Identification of a ubiquitously active promoter of the murine activation-induced cytidine deaminase (AICDA) gene. Mol Immunol. 2006;43(6):529–41.

    Article  PubMed  CAS  Google Scholar 

  47. Sayegh CE, Quong MW, Agata Y, Murre C. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat Immunol. 2003;4(6):586–93.

    Article  PubMed  CAS  Google Scholar 

  48. Kwon K, Hutter C, Sun Q, Bilic I, Cobaleda C, Malin S, et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity. 2008;28(6):751–62.

    Article  PubMed  CAS  Google Scholar 

  49. Park SR, Zan H, Pal Z, Zhang J, Al-Qahtani A, Pone EJ, et al. HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation. Nat Immunol. 2009;10(5):540–50.

    Article  PubMed  CAS  Google Scholar 

  50. Lee CH, Melchers M, Wang H, Torrey TA, Slota R, Qi CF, et al. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J Exp Med. 2006;203(1):63–72.

    Article  PubMed  CAS  Google Scholar 

  51. Ise W, Kohyama M, Schraml BU, Zhang T, Schwer B, Basu U, et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat Immunol. 2011;12(6):536–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Michael Reth for providing the parent 558LμM and μM.3 subclone and Marian Koshland for the IgA+ CH12 cells. We thank Holly Maier and Julita Ramirez for technical (HM and JR) and editorial (JR) assistance. This work was supported by NIH grants R01 AI054661 and AI081878. CD was in part supported by the Cancer Research Institute Pre-doctoral Emphasis Pathway in Tumor Immunology Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Hagman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dege, C., Hagman, J. Activation of Aicda gene transcription by Pax5 in plasmacytoma cells. Immunol Res 55, 155–161 (2013). https://doi.org/10.1007/s12026-012-8357-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8357-8

Keywords

Navigation