Skip to main content

Advertisement

Log in

Genetic and biochemical regulation of CD4 T cell effector differentiation: insights from examination of T cell clonal anergy

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The two-signal model of T cell activation states that antigen recognition by TCR provides a tolerogenic signal (termed Signal 1) unless the T cell receives simultaneous costimulation (Signal 2) that permits antigen recognition to prime activation. Our efforts to characterize genetic and biochemical factors resulting from Signal 1 alone have identified signaling molecules, transcription factors, and an epigenetic regulator that each contribute to the anergic phenotype observed. However, our most striking finding is that the same factors identified using anergy to model T cell activation versus tolerance also participate in determining the outcome of the effector phenotype of fully activated T cells. We summarize our own findings and other recent advances in the genetic and biochemical understanding of T cell activation, tolerance, and plasticity in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–80.

    CAS  PubMed  Google Scholar 

  2. Jenkins MK, Taylor PS, Norton SD, Urdahl KB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol. 1991;147:2461–6.

    CAS  PubMed  Google Scholar 

  3. Jenkins MK. The role of cell division in the induction of clonal anergy. Immunol Today. 1992;13:69–73.

    Article  CAS  PubMed  Google Scholar 

  4. Powell JD, Lerner CG, Schwartz RH. Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol. 1999;162:2775–84.

    CAS  PubMed  Google Scholar 

  5. Allen A, Zheng Y, Gardner L, Safford M, Horton MR, Powell JD. The novel cyclophilin binding compound, sanglifehrin A, disassociates G1 cell cycle arrest from tolerance induction. J Immunol. 2004;172:4797–803.

    CAS  PubMed  Google Scholar 

  6. Macian F, Garcia-Cozar F, Im SH, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 2002;109:719–31.

    Article  CAS  PubMed  Google Scholar 

  7. Riley JL, Mao M, Kobayashi S, Biery M, Burchard J, Cavet G, et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci USA. 2002;99:11790–5.

    Article  CAS  PubMed  Google Scholar 

  8. Diehn M, Alizadeh AA, Rando OJ, Liu CL, Stankunas K, Botstein D, et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc Natl Acad Sci USA. 2002;99:11796–801.

    Article  CAS  PubMed  Google Scholar 

  9. Kowalski J, Drake C, Schwartz RH, Powell J. Non-parametric, hypothesis-based analysis of microarrays for comparison of several phenotypes. Bioinformatics. 2004;20:364–73.

    Article  CAS  PubMed  Google Scholar 

  10. Safford M, Collins S, Lutz MA, Allen A, Huang CT, Kowalski J, et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat Immunol. 2005;6:472–80.

    Article  CAS  PubMed  Google Scholar 

  11. Mittelstadt PR, Ashwell JD. Cyclosporin A-sensitive transcription factor Egr-3 regulates Fas ligand expression. Mol Cell Biol. 1998;18:3744–51.

    CAS  PubMed  Google Scholar 

  12. Mittelstadt PR, Ashwell JD. Role of Egr-2 in up-regulation of Fas ligand in normal T cells and aberrant double-negative lpr and gld T cells. J Biol Chem. 1999;274:3222–7.

    Article  CAS  PubMed  Google Scholar 

  13. Collins S, Wolfraim LA, Drake CG, Horton MR, Powell JD. Cutting edge: TCR-induced NAB2 enhances T cell function by coactivating IL-2 transcription. J Immunol. 2006;177:8301–5.

    CAS  PubMed  Google Scholar 

  14. Collins S, Lutz MA, Zarek PE, Anders RA, Kersh GJ, Powell JD. Opposing regulation of T cell function by Egr-1/NAB2 and Egr-2/Egr-3. Eur J Immunol. 2008;38:528–36.

    Article  CAS  PubMed  Google Scholar 

  15. Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood. 2008;111:251–9.

    Article  CAS  PubMed  Google Scholar 

  16. Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DA. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol. 2002;32:2255–63.

    Article  CAS  PubMed  Google Scholar 

  17. Workman CJ, Vignali DA. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol. 2003;33:970–9.

    Article  CAS  PubMed  Google Scholar 

  18. Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21:503–13.

    Article  CAS  PubMed  Google Scholar 

  19. Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest. 2007;117:3383–92.

    Article  CAS  PubMed  Google Scholar 

  20. Choi H, Cho SY, Schwartz RH, Choi K. Dual effects of Sprouty1 on TCR signaling depending on the differentiation state of the T cell. J Immunol. 2006;176:6034–45.

    CAS  PubMed  Google Scholar 

  21. Lee JS, Lee JE, Oh YM, Park JB, Choi H, Choi CY, et al. Recruitment of Sprouty1 to immune synapse regulates T cell receptor signaling. J Immunol. 2009;183:7178–86.

    Article  CAS  PubMed  Google Scholar 

  22. Gamper CJ, Agoston AT, Nelson WG, Powell JD. Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation. J Immunol. 2009;183:2267–76.

    Article  CAS  PubMed  Google Scholar 

  23. O’Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 1999;22:167–73.

    Article  PubMed  Google Scholar 

  24. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R, et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell. 2006;126:755–66.

    Article  CAS  PubMed  Google Scholar 

  25. Sela U, Dayan M, Hershkoviz R, Lider O, Mozes E. A peptide that ameliorates lupus up-regulates the diminished expression of early growth response factors 2 and 3. J Immunol. 2008;180:1584–91.

    CAS  PubMed  Google Scholar 

  26. Zhu B, Symonds AL, Martin JE, Kioussis D, Wraith DC, Li S, et al. Early growth response gene 2 (Egr-2) controls the self-tolerance of T cells and prevents the development of lupuslike autoimmune disease. J Exp Med. 2008;205:2295–307.

    Article  CAS  PubMed  Google Scholar 

  27. Okamura T, Fujio K, Shibuya M, Sumitomo S, Shoda H, Sakaguchi S, et al. CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc Natl Acad Sci USA. 2009;106:13974–9.

    Article  CAS  PubMed  Google Scholar 

  28. Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414:916–20.

    Article  CAS  PubMed  Google Scholar 

  29. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA. 2006;103:13132–7.

    Article  CAS  PubMed  Google Scholar 

  30. Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell. 2003;12:1577–89.

    Article  CAS  PubMed  Google Scholar 

  31. Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol. 2003;4:235–40.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas RM, Gao L, Wells AD. Signals from CD28 induce stable epigenetic modification of the IL-2 promoter. J Immunol. 2005;174:4639–46.

    CAS  PubMed  Google Scholar 

  33. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  CAS  PubMed  Google Scholar 

  34. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429:900–3.

    Article  CAS  PubMed  Google Scholar 

  35. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity. 2009;30:832–44.

    Article  CAS  PubMed  Google Scholar 

  36. Murphy E, Shibuya K, Hosken N, Openshaw P, Maino V, Davis K, et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J Exp Med. 1996;183:901–13.

    Article  CAS  PubMed  Google Scholar 

  37. Amsen D, Spilianakis CG, Flavell RA. How are T(H)1 and T(H)2 effector cells made? Curr Opin Immunol. 2009;21:153–60.

    Article  CAS  PubMed  Google Scholar 

  38. Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, et al. Late developmental plasticity in the T helper 17 lineage. Immunity. 2009;30:92–107.

    Article  CAS  PubMed  Google Scholar 

  39. Shi G, Cox CA, Vistica BP, Tan C, Wawrousek EF, Gery I. Phenotype switching by inflammation-inducing polarized Th17 cells, but not by Th1 cells. J Immunol. 2008;181:7205–13.

    CAS  PubMed  Google Scholar 

  40. Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood. 2008;112:362–73.

    Article  CAS  PubMed  Google Scholar 

  41. Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity. 2009;30:155–67.

    Article  PubMed  Google Scholar 

  42. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity. 2001;15:763–74.

    Article  CAS  PubMed  Google Scholar 

  43. Hutchins AS, Mullen AC, Lee HW, Sykes KJ, High FA, Hendrich BD, et al. Gene silencing quantitatively controls the function of a developmental trans-activator. Mol Cell. 2002;10:81–91.

    Article  CAS  PubMed  Google Scholar 

  44. Young HA, Ghosh P, Ye J, Lederer J, Lichtman A, Gerard JR, et al. Differentiation of the T helper phenotypes by analysis of the methylation state of the IFN-gamma gene. J Immunol. 1994;153:3603–10.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Christopher Gamper is supported by a Hyundai Scholar Award. Jonathan Powell is supported by ACS RSG109185 and NIH 1R01CA114227-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Powell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamper, C.J., Powell, J.D. Genetic and biochemical regulation of CD4 T cell effector differentiation: insights from examination of T cell clonal anergy. Immunol Res 47, 162–171 (2010). https://doi.org/10.1007/s12026-009-8147-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8147-0

Keywords

Navigation