Skip to main content

Advertisement

Log in

Differential Regulation of Smac/DIABLO and Hsp-70 during Brain Maturation

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The heat shock protein (Hsp) system is a cell defense mechanism constitutively expressed at the basal state and essential for cell survival in response to damaging stimuli. Apoptosis is a physiological cell death program that preserves tissue homeostasis. We investigated the intrinsic pathway of apoptosis at various stages of brain maturation in CD-1 mice, triggered by two mitochondrial proapoptotic proteins, cytochrome c and Smac/DIABLO, and the pathway’s regulation by Hsp-70. Smac/DIABLO and Hsp-70 proteins were upregulated 2-fold and 1.5–3-fold, respectively, after birth. In contrast, in the presence of cytochrome c/2′-deoxyadenosine 5′-triphosphate (dATP), caspase activity in mouse brain cell-free extracts increased 90-fold and 61-fold, at fetal and neonatal stages, whereas no activation was detected 15 days postnatally or at any subsequent times. These results indicate that the activation pattern of the intrinsic pathway of apoptosis undergoes a marked shift during postnatal maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrain, C., Creagh, E. M., & Martin, S. J. (2001). Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO Journal, 20, 6627–6636.

    Article  PubMed  CAS  Google Scholar 

  • Arnoult, D., Gaume, B., Karbowski, M., et al. (2003). Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO Journal, 22, 4385–4399.

    Article  PubMed  CAS  Google Scholar 

  • Bartling, B., Lewensohn, R., & Zhivotovsky, B. (2004). Endogenously released Smac is insufficient to mediate cell death of human lung carcinoma in response to etoposide. Experimental Cell Research, 298, 83–95.

    Article  PubMed  CAS  Google Scholar 

  • Beere, H. M. (2004). “The stress of dying”: The role of heat shock proteins in the regulation of apoptosis. Journal of Cell Science, 117, 2641–2651.

    Article  PubMed  CAS  Google Scholar 

  • Beere, H. M., Wolf, B. B., Cain, K., et al. (2000). Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology, 2, 469–475.

    Article  PubMed  CAS  Google Scholar 

  • Carson, J. P., Behnam, M., Sutton, J. N., et al. (2002). Smac is required for cytochrome c-induced apoptosis in prostate cancer LNCaP cells. Cancer Research, 62, 18–23.

    PubMed  CAS  Google Scholar 

  • Chauhan, D., Hideshima, T., Rosen, S., et al. (2001). Apaf-1/cytochrome c-independent and Smac-dependent induction of apoptosis in multiple myeloma (MM) cells. Journal of Biological Chemistry, 276, 24453–24456.

    Article  PubMed  CAS  Google Scholar 

  • Creagh, E. M., Murphy, B. M., Duriez, P. J., et al. (2004). Smac/Diablo antagonizes ubiquitin ligase activity of inhibitor of apoptosis proteins. Journal of Biological Chemistry, 279, 26906–26914.

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh, M., Du, C., Wang, X., & Johnson, E. M. Jr. (2002). Exogenous smac induces competence and permits caspase activation in sympathetic neurons. Journal of Neuroscience, 22, 8018–8027.

    PubMed  CAS  Google Scholar 

  • Dirsch, V. M., Muller, I. M., Eichhorst, S. T., et al. (2003). Cephalostatin 1 selectively triggers the release of Smac/DIABLO and subsequent apoptosis that is characterized by an increased density of the mitochondrial matrix. Cancer Research, 63, 8869–8876.

    PubMed  CAS  Google Scholar 

  • Du, C., Fang, M., Li, Y., et al. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102, 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Ekert, P. G., & Vaux, D. L. (2005). The mitochondrial death squad: Hardened killers or innocent bystanders? Current Opinion in Cell Biology, 17, 626–630.

    Article  PubMed  CAS  Google Scholar 

  • Ferri, K. F., & Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nature Cell Biology, 3, E255–E263.

    Article  PubMed  CAS  Google Scholar 

  • Garrido, C., Bruey, J. M., Fromentin, A., et al. (1999). HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB Journal, 13, 2061–2070.

    PubMed  CAS  Google Scholar 

  • Gutsmann-Conrad, A., Heydari, A. R., You, S., & Richardson, A. (1998). The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects. Experimental Cell Research, 241, 404–413.

    Article  PubMed  CAS  Google Scholar 

  • Gutsmann-Conrad, A., Pahlavani, M. A., Heydari, A. R., & Richardson, A. (1999). Expression of heat shock protein 70 decreases with age in hepatocytes and splenocytes from female rats. Mechanisms of Ageing and Development, 107, 255–270.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T. M., Smith, D. J., & Nagley, P. (2006). Smac/DIABLO is not released from mitochondria during apoptotic signalling in cells deficient in cytochrome c. Cell Death and Differentiation, 13, 1181–1190.

    Article  PubMed  CAS  Google Scholar 

  • Hu, X. L., Olsson, T., Johansson, I. M., et al. (2004). Dynamic changes of the anti- and pro-apoptotic proteins Bcl-w, Bcl-2, and Bax with Smac/Diablo mitochondrial release after photothrombotic ring stroke in rats. European Journal of Neuroscience, 20, 1177–1188.

    Article  PubMed  Google Scholar 

  • Hunter, A. M., Kottachchi, D., Lewis, J., et al. (2003). A novel ubiquitin fusion system bypasses the mitochondria and generates biologically active Smac/DIABLO. Journal of Biological Chemistry, 278, 7494–7499.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Z., & El-Deiry, W. S. (2005). Overview of cell death signaling pathways. Cancer Biology and Therapy, 4, 139–163.

    Article  PubMed  CAS  Google Scholar 

  • Kandasamy, K., Srinivasula, S. M., Alnemri, E. S., et al. (2003). Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced mitochondrial disruption and apoptosis: Differential regulation of cytochrome c and Smac/DIABLO release. Cancer Research, 63, 1712–1721.

    PubMed  CAS  Google Scholar 

  • Kiang, J. G., & Tsokos, G. C. (1998). Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacological Therapy, 80, 183–201.

    Article  CAS  Google Scholar 

  • Kuan, C. Y., Roth, K. A., Flavell, R. A., & Rakic, P. (2000). Mechanisms of programmed cell death in the developing brain. Trends in Neuroscience, 23, 291–297.

    Article  CAS  Google Scholar 

  • Li, P., Nijhawan, D., Budihardjo, I., et al. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91, 479–489.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Kim, C. N., Yang, J., et al. (1996). Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell, 86, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Lotocki, G., Alonso, O. F., Frydel, B., et al. (2003). Monoubiquitination and cellular distribution of XIAP in neurons after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 23, 1129–1136.

    PubMed  CAS  Google Scholar 

  • Maiello, M., Boeri, D., Sampietro, L. et al. (1998). Basal synthesis of heat shock protein 70 increases with age in rat kidneys. Gerontology, 44, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • McArdle, A., Dillmann, W. H., Mestril, R., et al. (2004). Overexpression of HSP-70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB Journal, 18, 355–357.

    PubMed  CAS  Google Scholar 

  • Moore, S. A., Lopez, A., Richardson, A., & Pahlavani, M. A. (1998). Effect of age and dietary restriction on expression of heat shock protein 70 in rat alveolar macrophages. Mechanisms of Ageing and Development, 104, 59–73.

    Article  PubMed  CAS  Google Scholar 

  • Okada, H., Suh, W. K., Jin, J., et al. (2002). Generation and characterization of Smac/DIABLO-deficient mice. Molecular and Cellular Biology, 22, 3509–3517.

    Article  PubMed  CAS  Google Scholar 

  • Ota, K., Yakovlev, A. G., Itaya, A., et al. (2002). Alteration of apoptotic protease-activating factor-1 (APAF-1)-dependent apoptotic pathway during development of rat brain and liver. Journal of Biochemistry (Tokyo), 131, 131–135.

    CAS  Google Scholar 

  • Pandey, P., Farber, R., Nakazawa, A., et al. (2000). Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene, 19, 1975–1981.

    Article  PubMed  CAS  Google Scholar 

  • Rehm, M., Dussmann, H., & Prehn, J. H. (2003). Real-time single cell analysis of Smac/DIABLO release during apoptosis. Journal of Cell Biology, 162, 1031–1043.

    Article  PubMed  CAS  Google Scholar 

  • Saito, A., Hayashi, T., Okuno, S. et al. (2003). Interaction between XIAP and Smac/DIABLO in the mouse brain after transient focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 23, 1010–1019.

    PubMed  CAS  Google Scholar 

  • Saito, A., Hayashi, T., Okuno, S., et al. (2004). Oxidative stress is associated with XIAP and Smac/DIABLO signaling pathways in mouse brains after transient focal cerebral ischemia. Stroke, 35, 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  • Saleh, A., Srinivasula, S. M., Acharya, S., et al. (1999). Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. Journal of Biological Chemistry, 274, 17941–17945.

    Article  PubMed  CAS  Google Scholar 

  • Saleh, A., Srinivasula, S. M., Balkir, L., et al. (2000). Negative regulation of the Apaf-1 apoptosome by Hsp-70. Nature Cell Biology, 2, 476–483.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, M., Hattori, H., Sasaki, T. et al. (2002). Subcellular localization of a promoter and an inhibitor of apoptosis (Smac/DIABLO and XIAP) during brain ischemia/reperfusion. Neuroreports, 13, 1985–1988.

    Article  CAS  Google Scholar 

  • Shigenaga, M. K., Hagen, T. M., & Ames, B. N. (1994). Oxidative damage and mitochondrial decay in aging. Proceedings of the National Academy of Sciences USA, 91, 10771–10778.

    Article  CAS  Google Scholar 

  • Shiozaki, E. N., & Shi, Y. (2004). Caspases, IAPs and Smac/DIABLO: Mechanisms from structural biology. Trends in Biochemical Sciences, 29, 486–494.

    Article  PubMed  CAS  Google Scholar 

  • Siegelin, M., Touzani, O., Toutain, J., et al. (2005a). Induction and redistribution of XAF1, a new antagonist of XIAP in the rat brain after transient focal ischemia. Neurobiology of Disease, 20, 509–518.

    Article  PubMed  CAS  Google Scholar 

  • Siegelin, M. D., Kossatz, L. S., Winckler, J., & Rami, A. (2005b). Regulation of XIAP and Smac/DIABLO in the rat hippocampus following transient forebrain ischemia. Neurochemistry International, 46, 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Skulachev, V. P. (2001). The programmed death phenomena, aging, and the Samurai law of biology. Experimental Gerontology, 36, 995–1024.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasula, S. M., Datta, P., Fan, X. J., et al. (2000). Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. Journal of Biological Chemistry, 275, 36152–36157.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasula, S. M., Hegde, R., Saleh, A., et al. (2001). A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 410, 112–116.

    Article  PubMed  CAS  Google Scholar 

  • Stoka, V., Chen, S. F., Turk, V., & Bredesen, D. E. (2005). Developmental shift in the apostat: Comparison of neurones and astrocytes. FEBS Letters, 579, 6147–6150.

    Article  PubMed  CAS  Google Scholar 

  • Stoka, V., Turk, V., & Bredesen, D. E. (2006). Differential regulation of the intrinsic pathway of apoptosis in brain and liver during ageing. FEBS Letters, 580, 3739–3745.

    Article  PubMed  CAS  Google Scholar 

  • Sugawara, T., Noshita, N., Lewen, A. et al. (2002). Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. Journal of Neuroscience, 22, 209–217.

    PubMed  CAS  Google Scholar 

  • Takai, D., Inoue, K., Shisa, H. et al. (1995). Age-associated changes of mitochondrial translation and respiratory function in mouse brain. Biochemical and Biophysical Research Communications, 217, 668–674.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., Yokota, H., Jover, T. et al. (2004). Ischemic preconditioning: Neuronal survival in the face of caspase-3 activation. Journal of Neuroscience, 24, 2750–2759.

    Article  PubMed  CAS  Google Scholar 

  • Tandara, A. A., Kloeters, O., Kim, I., et al. (2006). Age effect on HSP-70: Decreased resistance to ischemic and oxidative stress in HDF. The Journal of Surgical Research, 132, 32–39.

    Article  PubMed  CAS  Google Scholar 

  • van Loo, G., Saelens, X., van Gurp, M., et al. (2002). The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death Differentiation, 9, 1031–1042.

    Article  CAS  Google Scholar 

  • Verhagen, A. M., Ekert, P. G., Pakusch, M., et al. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 102, 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Verhagen, A. M., Silke, J., Ekert, P. G., et al. (2002). HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. Journal of Biological Chemistry, 277, 445–454.

    Article  PubMed  CAS  Google Scholar 

  • Yao, M., Nguyen, T. V., & Pike, C. J. (2005). Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. Journal of Neuroscience, 25, 1149–1158.

    Article  PubMed  CAS  Google Scholar 

  • Yin, K. J., Lee, J. M., Chen, S. D., et al. (2002). Amyloid-beta induces Smac release via AP-1/Bim activation in cerebral endothelial cells. Journal of Neuroscience, 22, 9764–9770.

    PubMed  CAS  Google Scholar 

  • Yakovlev, A. G., Ota, K., Wang, G., et al. (2001). Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. Journal of Neuroscience, 21, 7439–7446.

    PubMed  CAS  Google Scholar 

  • Zhou, L. L., Zhou, L. Y., Luo, K. Q., & Chang, D. C. (2005). Smac/DIABLO and cytochrome c are released from mitochondria through a similar mechanism during UV-induced apoptosis. Apoptosis, 10, 289–299.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, C., Wang, X., Xu, F., et al. (2005). The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differentiation, 12, 162–176.

    Article  CAS  Google Scholar 

  • Zou, H., Li, Y., Liu, X., & Wang, X. (1999). An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. Journal of Biological Chemistry, 274, 11549–11556.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Sylvia F. Chen for technical assistance during brain tissue preparation. This study was supported by NIH grants AG12282 and NS33376 to D.E.B. and grant P1-0140 from the Ministry of Higher Education, Science and Technology of the Republic of Slovenia to V.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale E. Bredesen.

Additional information

Vito Turk and Dale E. Bredesen share senior authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoka, V., Turk, V. & Bredesen, D.E. Differential Regulation of Smac/DIABLO and Hsp-70 during Brain Maturation. Neuromol Med 9, 255–263 (2007). https://doi.org/10.1007/s12017-007-8007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-007-8007-9

Keywords

Navigation