Skip to main content
Log in

On the Structure-Bounded Growth Processes in Plant Populations

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

If growing cells in plants are considered to be composed of increments (ICs) an extended version of the law of mass action can be formulated. It evidences that growth of plants runs optimal if the reaction–entropy term (entropy times the absolute temperature) matches the contact energy of ICs. Since these energies are small, thermal molecular movements facilitate via relaxation the removal of structure disturbances. Stem diameter distributions exhibit extra fluctuations likely to be caused by permanent constraints. Since the signal–response system enables in principle perfect optimization only within finite-sized cell ensembles, plants comprising relatively large cell numbers form a network of size-limited subsystems. The maximal number of these constituents depends both on genetic and environmental factors. Accounting for logistical structure–dynamics interrelations, equations can be formulated to describe the bimodal growth curves of very different plants. The reproduction of the S-bended growth curves verifies that the relaxation modes with a broad structure-controlled distribution freeze successively until finally growth is fully blocked thus bringing about “continuous solidification”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bertallanaffy, V. L. (1957). Quantitative laws in metabolism and growth. Quarterly Review of Biology, 32, 217–231.

    Article  Google Scholar 

  2. Schneider, M. K., Law, R., & Illian, J. B. (2006). Quantification of neighborhood-dependent plant growth by Bayesian hierarchical modelling. Journal of Ecology, 94, 310–321.

    Article  Google Scholar 

  3. Hara, T. (1988). Dynamics of size structure in plant populations. Trends in Ecology & Evolution, 3, 129–133.

    Article  Google Scholar 

  4. Weiner, J., Kinsman, S., & Williams, S. (1998). Modelling the growth of individuals in plant populations: local density variation in a strand population of Xanthium strumarium (Asteraceae). American Journal of Botany, 85, 1638–1645.

    Article  Google Scholar 

  5. Weiner, J., & Thomas, S. W. (1986). Size variability and competition in plant monocultures. Oikos., 47, 211–222.

    Article  Google Scholar 

  6. Banavar, J. R., Damuth, J., Maritan, A., & Rinaldo, A. (2002). Ontogenetic growth: Modelling universality and scaling. Nature., 420, 626–627.

    Article  CAS  PubMed  Google Scholar 

  7. Damgaard, C., Weiner, J., & Nagahshima, H. (2002). Modelling individual growth and competition in plant populations: growth curves of Chenopodium album. Journal of Ecology, 90, 666–671.

    Article  Google Scholar 

  8. Jürgens, G. (2003). Growing up green: Cellular basis of plant development. Mechanisms of Development, 120, 1395–1406.

    Article  PubMed  Google Scholar 

  9. Green, P. B. (1976). Growth and cell pattern formation on an axis: Critique of concepts, terminology and modes of study. Botanical Gazette, 137, 187–202.

    Article  Google Scholar 

  10. Cockcroft, C. E., den Boer, B. G. W., Healy, J. M. S., & Murrey, J. A. H. (2000). Cyclin D control of growth rate in plants. Nature., 405, 575–579.

    Article  CAS  PubMed  Google Scholar 

  11. Hara, T., & Yokozawa, M. (1994). Effects of physiological and environmental variations on size–structure dynamics in plant populations. Annals of Botany, 73, 39–51.

    Article  Google Scholar 

  12. Schmid, I., & Kadzda, M. (2001). Vertical distribution and radial growth of coarse roots in pure and mixed stands of Fagus sylvatica and Picea abies. Canadian Journal of Forest Research, 3, 539–548.

    Article  Google Scholar 

  13. Damgaard, C., & Weiner, J. (2008). Modeling of the growth of individuals in crowded plant populations. J Plant Ecolology, 1, 111–116.

    Article  Google Scholar 

  14. Zeide, B. (1993). Analysis of growth equations. Forest Science, 39, 594–616.

    Google Scholar 

  15. Yeytman, B. A., & Cosgrove, D. J. (1998). A model of cell wall expansion based on thermodynamics of polymer networks. Biophysical Journal, 75, 2240–2250.

    Article  Google Scholar 

  16. Kilian, H. G., Kemkemer, R., & Gruler, H. (2002). Universality and individuality as complementary factor to optimize and reproduce cell populations. Colloid and Polymer Science, 280, 1151–1156.

    Article  CAS  Google Scholar 

  17. Kilian, H. G., Bartkowiak, D., Kaufmann, D., & Kemkemer, R. (2008). The general growth logistics of cell populations. Cell Biochemistry and Biophysics, 51, 51–66.

    Article  CAS  PubMed  Google Scholar 

  18. Kilian, H. G., Gruler, H., & Kemkemer, R. (2004). Relaxations processes during cell growth. Progress in Colloid and Polymer Science, 125, 198–205.

    CAS  Google Scholar 

  19. Pelling, A. E., Sehati, S. B., Gralla, B., Valentie, J. S., & Gimzewski, J. K. (2004). Local nanomechanical motion of the cell wall of Saccharomyces cerevisae. Science., 305, 1147–1150.

    Article  CAS  PubMed  Google Scholar 

  20. Volkov, I., Banavar, J. R., He, F., & Hubell, S. P. (2005). Density dependence explains tree species abundance and diversity in tropical forests. Nature, 438, 658–661.

    Article  CAS  PubMed  Google Scholar 

  21. Shemesh, T., Geiger, B., Bershatzky, A. D., & Kozlov, M. M. (2005). Focal adhesions as mechanosensors: A physical Mechanism. Proceedings of the National Academy of Sciences of the United States of America, 102, 12383–12388.

    Article  CAS  PubMed  Google Scholar 

  22. Sitte, P., Ziegler, H., Ehrendorfer, F., Bresinsky, A. (1997). Strasburger, Lehrbuch der Botanik. (34th ed., pp. 120, Fig. 1-42 B). Spektrum: Akademischer Verlag, Gustav Fischer.

  23. Holmes, P., Goffard, N., Weiller, G. F., Rolfe, B. G., & Imin, N. (2008). Transcriptional profiling of Medicago truncatula root cells. BMC Plant Biology, 8, 21.

    Article  PubMed  Google Scholar 

  24. Micoulet, A., Spatz, J. P., & Ott, A. (2005). Mechanical response analysis and power generation by single-cell stretching. Chemical Physics and Physical Chemistry, 6, 663–670.

    CAS  PubMed  Google Scholar 

  25. Koepf, M., & Kilian, H. G. (1999). Relaxation in the glass transition regime interpreted in terms of the aggregate model. Acta Polymerica, 59, 109–121.

    Article  Google Scholar 

  26. Sitte, P., Ziegler, H., Ehrendorfer, F., & Bresinsky, A. (1997). Strasburger, Lehrbuch der Botanik (34th ed., pp. 400–411). Spektrum: Akademischer Verlag, Gustav Fischer.

  27. Penel, C., Gaspae, Th, & Geppin, H. (1985). Rapid interorgan communications in higher plants with special reference to flowering. Biologia Plantarium., 27, 334–338.

    Article  Google Scholar 

  28. Puig, S., Mira, H., Dorcey, E., Sancenón, V., Andrés-Colás, N., Garcia-Molina, A., et al. (2006). Higher plants possess two different types of ATX1-like copper chaperones. Biochemical and Biophysical Research Communications, 354, 385–390.

    Article  Google Scholar 

  29. Mackenzie, S., & McIntosh, L. (1999). Higher plant mitochondria. Plant Cell, 11, 571–585.

    Article  CAS  PubMed  Google Scholar 

  30. McCrum, N. G., Read, B. E., & Williams, G. (1967). Anelastic and dielectric effects in polymer solids (p. 102). London: Wiley.

    Google Scholar 

  31. Brophy, C., Gibson, D. J., Wayne, P. M., & Connolly, J. (2008). How reproductive allocation and flowering probability of individuals in plant populations are affected by position in stand size hierarchy, plant size and CO2 regime. J Plant Ecology, 1, 207–215.

    Article  Google Scholar 

  32. Hofmann, A. L. (2007). Untersuchungen zur Isolierung von Regulator-Genen des floralen Meristem-Identitäts-Gens FLORICAULA aus Antirrhinum majus (Thesis). (pp. 13–15) Köln: Matematisch-Naturwissenschaftliche Fakultät, Universität.

  33. Ogle, K., & Pacala, S. W. (2009). A modeling framework of inferring tree growth and allocation from physiological, morphological and allometric traits. Tree Physiology, 29, 587–605.

    Article  CAS  PubMed  Google Scholar 

  34. Hozumi, K. (1987). Analysis of growth curve of stem volume in some woody species using the uw diagram. The Botanical Magazine Tokyo, 100, 87–97.

    Article  Google Scholar 

  35. Nagashima, H., Tereashima, I., & Katoh, S. (1995). Effects of plant density distributions of plant height in chenopodium album stands: analysis based on continuous monitoring of height-growth of individual plants. Annals of Botany, 75, 173–180.

    Article  Google Scholar 

  36. Nagashima, H., & Terashima, I. (1995). Relationships between height, diameter and weight distributions of Chenopodium album plants in stands: effects of dimension and allometry. Annals of Botany, 75, 181–188.

    Article  Google Scholar 

  37. Groover, A., & Robischon, M. (2006). Developmental mechanisms regulating secondary growth in woody plants. Current Opinion in Plant Biology, 9, 55–58.

    Article  CAS  PubMed  Google Scholar 

  38. Fehrmann, L. (2006). Alternative Methoden zur Biomassenschätzung auf Einzelbaumebene unter spezieller Berücksichtigung der k-Nearest Neighbour (k-NN) (Thesis). (pp. 59) Göttingen: Methode Fakultät für Forstwissenschaften und Waldökologie der Georg-August-Universität.

  39. Koyama, T., & Hara, T. (1989). Frequency distribution of tree growth rate in natural forest stands. Annals of Botany, 64, 47–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Kilian.

Appendix

Appendix

Growth curves are calculated with Eq. 10. For biomass the parameter p was set equal to 3 while height was characterized by p = 1. All parameters except from p were assigned their values by educated guess and subsequent manual optimization.

To describe dbh or height distributions, Eq. 1 was subjected to an iterative non-linear fit procedure (Excel Solver). During iterations at constant values for ξ and y min the parameters p and βΔu 0 were modified until the deviation reduction converged towards 0.0001. These fits incorporate aberrant data points. To quantify this, we use the parameter γ which relates all deviations from the ideal size-distribution to the total plant mass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilian, H.G., Kazda, M., Király, F. et al. On the Structure-Bounded Growth Processes in Plant Populations. Cell Biochem Biophys 57, 87–100 (2010). https://doi.org/10.1007/s12013-010-9087-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-010-9087-y

Keywords

Navigation