Skip to main content
Log in

Production of Cell Membrane-Bound α- and β-Glucosidase by Lactobacillus acidophilus

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Hydrolytic enzymes, viz. α- and β-glucosidase, were produced from indigenous isolate, Lactobacillus acidophilus, isolated from fermented Eleusine coracana. Production of these enzymes was enhanced by optimizing media using one factor at a time followed by response surface methodology. The optimized media resulted in a 2.5- and 2.1-fold increase in α- and β-glucosidase production compared with their production in basal MRS medium. Localization studies indicated 80% of the total activity to be present in the cell membrane-bound fraction. Lack of sufficient release of these enzymes using various physical, chemical, and enzymatic methods confirmed their unique characteristic of being tightly cell membrane bound. Enzyme characterization revealed that both α- and β-glucosidase exhibited optimum catalytic activity at 50 °C and pH 6.0 and 5.0, respectively. K m and V max of α-glucosidase were 4.31 mM and 149 μmol min−1 mL−1 for p-nitrophenyl-α-d-glucopyranoside as substrate and 3.8 mM and 120 μmol min−1 mL−1 for β-glucosidase using p-nitrophenyl-β-d-glucopyranoside as the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adsul, M., Khire, J., Bastawde, K., & Gokhale, D. (2007). Production of lactic acid from cellobiose and cellotriose by Lactobacillus delbrueckii mutant Uc-3. Applied and Environmental Microbiology, 73(15), 5055–5057.

    Article  CAS  Google Scholar 

  • Akolkar, S. K., Sajgure, A. D., & Lele, S. S. (2005). Lactase production from Lactobacillus acidophilus. World Journal of Microbiology & Biotechnology, 21, 1119–1122.

    Article  CAS  Google Scholar 

  • Akolkar, S. K., Sajgure, A. D., & Lele, S. S. (2006). β-Galactosidase from Lactobacillus acidophilus isolated from fermented ragi (Eleusine coracana). Indian Journal of Biotechnology, 5, 184–188.

    CAS  Google Scholar 

  • Calo-Mata, P., Arlindo, S., Boehme, K., de Miguel, T., Pascoal, A., & Barros-Velazquez, J. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food and Bioprocess Technology, 1, 43–63.

    Article  Google Scholar 

  • Chan, K.-Y., & Li, K.-B. (1983). Production and properties of α-glucosidase from Lactobacillus acidophilus. Applied and Environmental Microbiology, 46, 1380–1387.

    Google Scholar 

  • Coughlan, M. P. (1985). The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnology & Genetic Engineering Reviews, 3, 39–109.

    CAS  Google Scholar 

  • De Cort, S., Shantha Kumar, H. M. C., & Verachtert, H. (1994). Localization and characterization of α-glucosidase activity in Lactobacillus brevis. Applied and Environmental Microbiology, 60, 3074–3078.

    Google Scholar 

  • De Vuyst, L., & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23, 153–177.

    Article  Google Scholar 

  • Dunn, G. M. (1985). Nutritional requirements of microorganisms. In M. Moo Young (Ed.), Comprehensive biotechnology (Vol. 1, pp. 113–125). Oxford: Pergamon.

    Google Scholar 

  • Flachner, B., & Reczey, K. (2004). β-Glucosidase production and characterization of some Aspergillus strains. Chemical and Biochemical Engineering Quarterly, 18(3), 303–307.

    CAS  Google Scholar 

  • Gallifuoco, A., O’Ercoie, L., Alfani, F., Canlarella, M., Spagna, G., & Pitrcri, P. G. (1998). On the use of chitosan-immobilizcd beta-glucosidase in wine making: kinetics and enzyme inhibition. Process Biochemistry, 33, 163–168.

    Article  CAS  Google Scholar 

  • Giblin, M., Kelly, C. T., & Fogarty, W. M. (1987). Thermostable alpha-glucosidase produced by Bacillus caldovelox DSM411. Canadian Journal of Microbiology, 33, 614–618.

    Article  CAS  Google Scholar 

  • Gueguen, Y., Chemardin, P., Labrot, P., Arnaud, A., & Galzy, P. (1991). Purification and characterization of an intracellular β-glucosidase from a new strain of Leuconostoc mesenteroides isolated from cassava. Journal of Applied Microbiology, 82, 469–476.

    Article  Google Scholar 

  • Hers, H. G. (1963). α-Glucosidase deficiency in generalized glycogen storage disease (Pompe’s disease). The Biochemical Journal, 86, 11–16.

    CAS  Google Scholar 

  • Jager, S., Brumbauer, A., Feher, E., Kati, R., & Kiss, L. (2001). Production and characterization of β-glucosidase from different Aspergillus strains. World Journal of Microbiology & Biotechnology, 17, 455–461.

    Article  CAS  Google Scholar 

  • Juhasz, T., Egyhazi, A., & Reczey, K. (2005). β-glucosidase production by Trichoderma reesei. Applied Biochemistry and Biotechnology—Part A Enzyme Engineering and Biotechnology, 121(1–3), 243–254.

    Article  Google Scholar 

  • Kelly, C. T., & Fogarty, W. M. (1983). Microbial α-glucosidases. Process Biochemistry, 18, 6–12.

    CAS  Google Scholar 

  • Kosary, J., Stefanovits-Banyai, E., & Boross, L. (1998). Reverse hydrolytic process for O-alkylation of glucose catalysed by immobilized α and β-glucosidases. Journal of Biotechnology, 66, 83–86.

    Article  CAS  Google Scholar 

  • Matsuda, S., Norimoto, F., Matsumoto, Y., Ohba, R., Teramoto, Y., Ohta, N., et al. (1994). Solubilization of novel isoflavone glycoside-hydrolysing β-Glucosidase from Lactobacillus casei subsp. rhamnosus. Journal of Fermentation and Bioengineering, 77, 439–441.

    Article  CAS  Google Scholar 

  • Mihoc, A., & Klueppel, D. (1990). Purification and characterization of a β-glucosidase from Streptomyces lividans 66. Canadian Journal of Microbiology, 36, 53–56.

    Article  CAS  Google Scholar 

  • Ozaki, H., & Yamada, K. (1991). Isolation of Streptomyces sp. producing glucose-tolerant β-glucosidases and properties of the enzymes. Agricultural and Biological Chemistry, 55(4), 979–987.

    Article  CAS  Google Scholar 

  • Palmeri, R., & Spagna, G. (2007). β-Glucosidase in cellular and acellular form for winemaking application. Enzyme and Microbial Technology, 40, 382–389.

    Article  CAS  Google Scholar 

  • Prema, P., Smila, D., Palavesam, A., & Immanuel, G. (2010). Production and characterization of an antifungal compound (3-phenyllactic acid) produced by Lactobacillus plantarum strain. Food and Bioprocess Technology, 3, 379–386.

    Article  CAS  Google Scholar 

  • Pyo, Y. H., Lee, T. C., & Lee, Y. C. (2005). Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase producing lactic acid bacteria. Food Research International, 38, 551–559.

    Article  CAS  Google Scholar 

  • Ravindran, G. (1991). Studies on millets: proximate composition, mineral composition, phytate and oxalate content. Food Chemistry, 39, 99–107.

    Article  CAS  Google Scholar 

  • Riou, C., Salmon, J. M., Vallier, M. J., Gunata, Z., & Barre, P. (1998). Purification, characterization and substrate specificity of a novel highly glucose-tolerant glucosidase from Aspergillus oryzae. Applied and Environmental Microbiology, 64, 3607–3614.

    CAS  Google Scholar 

  • Sakai, K., Tachiki, T., Kumagai, H., & Tochikura, T. (1986). Isolation and characterization of two β-glucosidases from Bifido-bacterium breve 203. Agricultural and Biological Chemistry, 50(9), 2287–2293.

    Article  CAS  Google Scholar 

  • Sanni, A. I., Morlon-Guyot, J., & Guyot, J. P. (2002). New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. International Journal of Food Microbiology, 72, 53–62.

    Article  CAS  Google Scholar 

  • Sarka, M., Hana, D., Richard, H., & Blanka, K. (1999). Towards regioselective synthesis of oligosaccharides by use of α-glucosidases with different substrate specificity. Carbohydrate Research, 322, 209–218.

    Article  Google Scholar 

  • Sestelo, A. B. F., Poza, M., & Villa, T. G. (2004). β-Glucosidase activity in a Lactobacillus plantarum wine strain. World Journal of Microbiology & Biotechnology, 20, 633–637.

    Article  CAS  Google Scholar 

  • Shantha Kumara, H. M. C., De Cort, S., & Verachtert, H. (1993). Localization and characterization of α-glucosidase activity in Brettanomyces lambicu. Applied and Environmental Microbiology, 59, 2352–2358.

    Google Scholar 

  • Tsangalis, D., Ashton, J. F., Mcgill, A. E. J., & Shah, N. P. (2002). Enzymic transformation of isoflavone phytoestrogens in soymilk by β-Glucosidase producing Bifidobacteria. Journal of Food Science, 67(8), 3104–3113.

    Article  CAS  Google Scholar 

  • Tsangalis, D., Ashton, J. F., Mcgill, A. E. J., & Shah, N. P. (2003). Biotransformation of isoflavones by Bifidobacteria in fermented soymilk supplemented with d-glucose and l-cysteine. Journal of Food Science, 68(2), 623–631.

    Article  CAS  Google Scholar 

  • Urlaub, M., & Wober, G. (1978). α-glucosidase, a membrane-bound enzyme of α-glucan metabolism in Bacillus Amyloliquefacien. Biochemica et Biophysica Acta, 522, 161–173.

    CAS  Google Scholar 

  • Venardos, D., Klei, H. E., & Sundstrom, D. W. (1980). Conversion of cellobiose to glucose using immobilized β-glucosidase reactors. Enzyme and Microbial Technology, 2, 112–116.

    Article  CAS  Google Scholar 

  • Vihinen, H., & Mantsala, P. (1989). Microbial amylolytic enzymes. Critical Reviews in Biochemistry and Molecular Biology, 24, 329.

    Article  CAS  Google Scholar 

  • Woodward, J., & Arnold, S. L. (1981). The inhibition of beta-glucosidase activity in Trichoderma reesei C30 cellulase by derivatives and isomers of glucose. Biotechnology and Bioengineering, 23, 1553–1562.

    Article  CAS  Google Scholar 

  • Woodward, J., & Wiseman, A. (1982). Fungal and other β-D-glucosidases their properties and applications. Enzyme and Microbial Technology, 4, 73–79.

    Article  CAS  Google Scholar 

  • Zouhar, J., Vevodova, J., Marek, J., Damborsky, J., Su, X. D., & Bnobohaty, B. (2001). Insights into the functional architecture of the catalytic center of a maize beta-glucosidase Zm-p60.l. Plant Physiology, 127, 973–985.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Department of Biotechnology, Ministry of Science and Technology, Government of India, for providing financial assistance during the course of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Lele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahajan, P.M., Desai, K.M. & Lele, S.S. Production of Cell Membrane-Bound α- and β-Glucosidase by Lactobacillus acidophilus . Food Bioprocess Technol 5, 706–718 (2012). https://doi.org/10.1007/s11947-010-0417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0417-2

Keywords

Navigation