Skip to main content
Log in

Cardiac PET, CT, and MR: What Are the Advantages of Hybrid Imaging?

  • Cardiac PET, CT, and MRI (S Achenbach, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Cardiac hybrid imaging combines different imaging modalities in a way where both modalities equally contribute to image information. Hybrid positron emission tomography-computed tomography (PET-CT) imaging is a promising tool for evaluation of coronary artery disease (CAD) because it enables detection of coronary atherosclerotic lesions by CT angiography and their consequences on myocardial blood flow by PET perfusion in a single study. This appears to offer superior diagnostic accuracy in patients with intermediate risk for CAD compared with stand-alone imaging. Novel, commercially available hybrid scanners containing PET and magnetic resonance as well as development of targeted probes to evaluate molecular and cellular disease mechanisms are expected to provide many new applications for cardiac hybrid imaging. This article focuses on the advantages of cardiac hybrid imaging in the detection of CAD in light of currently available clinical data and discusses the potential future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACCURACY:

Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography

CORE-64:

Coronary Evaluation Using Multi-Detector Spiral Computed Tomography Angiography Using 64 Detectors

COURAGE:

Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation

EVINCI:

Evaluation of Integrated Cardiac Imaging in Ischemic Heart Disease

FAME:

Fractional Flow Reserve Versus Angiography for Guiding PCI in Patients with Multivessel Evaluation

SPARC:

The study of myocardial perfusion and coronary anatomy imaging roles in CAD

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Knuuti J,. Kaufmann PA. Hybrid imaging: PET–CT and SPECT–CT. In: Zamorano JL, Bax JJ, Rademakers FE, Knuuti J, editors. The ESC textbook of cardiovascular imaging. Springer; 2009. p. 89–101.

  2. Flotats A, Knuuti J, Gutberlet M, Marcassa C, Bengel FM, Kaufmann PA, et al. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging. 2011;38:201–12.

    Article  PubMed  Google Scholar 

  3. Schroeder S, Achenbach S, Bengel F, Burgstahler C, Cademartiri F, de Feyter P, et al. Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology. Eur Heart J. 2008;29:531–56.

    Article  PubMed  Google Scholar 

  4. Wijns W, Kolh P, Danchin N, Di Mario C, Falk V, Folliguet T, et al. Guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2010;31:2501–55.

    Article  PubMed  Google Scholar 

  5. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117:1283–91.

    Article  PubMed  Google Scholar 

  6. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  7. Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21.

    Article  PubMed  Google Scholar 

  8. Gould KL. Identifying and measuring severity of coronary artery stenosis. Quantitative coronary arteriography and positron emission tomography. Circulation. 1988;78:237–45.

    Article  PubMed  CAS  Google Scholar 

  9. Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–44.

    Article  PubMed  Google Scholar 

  10. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.

    Article  PubMed  CAS  Google Scholar 

  11. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.

    Article  PubMed  Google Scholar 

  12. Schuijf JD, Wijns W, Jukema JW, et al. Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol. 2006;48:2508–14.

    Article  PubMed  Google Scholar 

  13. Hacker M, Jakobs T, Hack N, et al. Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med Mol Imaging. 2007;34:4–10.

    Article  PubMed  Google Scholar 

  14. Sato A, Tamura M, Ohigashi H, et al. Quantitative measures of coronary stenosis severity by 64-slice CT angiography and relation to physiologic significance of perfusion in nonobese patients: comparison with stress myocardial perfusion imaging. J Nucl Med. 2008;49:564–72.

    Article  PubMed  Google Scholar 

  15. Gaemperli O, Schepis T, Velenta I, et al. Functionally relevant coronary artery disease: comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology. 2008;248:414–23.

    Article  PubMed  Google Scholar 

  16. Leber AW, Knez A, von Ziegler F, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005;46:147–54.

    Article  PubMed  Google Scholar 

  17. Mejiboom WB, van Mieghem CA, Mollet NR, et al. 64-slice computed tomography coronary angiography in patients with high-intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol. 2007;50:1469–75.

    Article  Google Scholar 

  18. Underwood SR, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint EJ, Harbinson M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31:261–91.

    Article  PubMed  CAS  Google Scholar 

  19. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97:535–43.

    PubMed  CAS  Google Scholar 

  20. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation. 2007;115:1464–80.

    Article  PubMed  Google Scholar 

  21. Bergmann SR, Fox KA, Rand AL, McElvany KD, Welch MJ, Markham J, et al. Quantification of regional myocardial blood flow in vivo with H215O. Circulation. 1984;70:724–33.

    Article  PubMed  CAS  Google Scholar 

  22. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol. 1990;15:1032–42.

    Article  PubMed  CAS  Google Scholar 

  23. Knuuti J, Kajander S, Maki M, Ukkonen H. Quantification of myocardial blood flow will reform the detection of cad. J Nucl Cardiol. 2009;16:497–506.

    Article  PubMed  Google Scholar 

  24. Kajander SA, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, Sipilä HT, Teräs M, Mäki M, Airaksinen J, Hartiala J, Knuuti J. Clinical value of absolute quantification of myocardial perfusion with 15O-water in coronary artery disease. Circ Cardiovasc Imaging 2011; [Epub ahead of print].

  25. Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Hart R, Beauchesne L, et al. Potential utility of rubidium 82 pet quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11:440–9.

    Article  PubMed  CAS  Google Scholar 

  26. Yoshinaga K, Katoh C, Noriyasu K, Iwado Y, Furuyama H, Ito Y, et al. Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: a study using oxygen 15-labeled water pet. J Nucl Cardiol. 2003;10:275–83.

    Article  PubMed  Google Scholar 

  27. Nekolla SG, Saraste A. Novel F-18-labeled PET myocardial perfusion tracers: bench to bedside. Curr Cardiol Rep. 2011;13:145–50.

    Article  PubMed  Google Scholar 

  28. Javadi MS, Lautamaki R, Merrill J, Voicu C, Epley W, McBride G, et al. Definition of vascular territories on myocardial perfusion images by integration with true coronary anatomy: a hybrid PET/CT analysis. J Nucl Med. 2010;51:198–203.

    Article  PubMed  Google Scholar 

  29. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364:226–35.

    Article  PubMed  CAS  Google Scholar 

  30. Karamitsos TD, Dall’Armellina E, Choudhury RP, Neubauer S. Ischemic heart disease: comprehensive evaluation by cardiovascular magnetic resonance. Am Heart J. 2011;162:16–30.

    Article  PubMed  Google Scholar 

  31. Saraste A, Nekolla S, Schwaiger M. Contrast-enhanced magnetic resonance imaging in the assessment of myocardial infarction and viability. J Nucl Cardiol. 2008;15:105–17.

    Article  PubMed  Google Scholar 

  32. • Büscher K, Judenhofer MS, Kuhlmann MT, Hermann S, Wehrl HF, Schäfers KP, Schäfers M, Pichler BJ, Stegger L. Isochronous assessment of cardiac metabolism and function in mice using hybrid PET/MRI. J Nucl Med 2010;51:1277–84. This is a preclinical demonstration of feasibility of obtaining simultaneous MR and PET cardiac images of myocardial infarction with a prototype MR/PET hybrid scanner with a PET insert.

    Article  PubMed  Google Scholar 

  33. Nekolla SG, Martinez-Moeller A, Saraste A. PET and MRI in cardiac imaging: from validation studies to integrated applications. Eur J Nucl Med Mol Imaging. 2009;36:S121–30.

    Article  PubMed  Google Scholar 

  34. Manka R, Kuhn FP, Kuest SM, Gaemperli O, Kozerke S, Kaufmann PA. Hybrid cardiac magnetic resonance/computed tomographic imaging: first fusion of three-dimensional magnetic resonance perfusion and low-dose coronary computed tomographic angiography. Eur Heart J 2011; [epub ahead of print].

  35. Namdar M, Hany TF, Koepfli P, Siegrist PT, Burger C, Wyss CA, et al. Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med. 2005;46:930–5.

    PubMed  Google Scholar 

  36. Rispler S, Keidar Z, Ghersin E, Roguin A, Soil A, Dragu R, et al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol. 2007;49:1059–67.

    Article  PubMed  Google Scholar 

  37. Groves AM, Speechly-Dick ME, Kayani I, Pugliese F, Endozo R, McEwan J, et al. First experience of combined cardiac PET/64-detector CT angiography with invasive angiographic validation. Eur J Nucl Med Mol Imaging. 2009;36:2027–33.

    Article  PubMed  Google Scholar 

  38. •• Kajander S, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A, Sipila HT, Teras M, Maki M, Airaksinen J, Hartiala J, Knuuti J. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation 2010;122:603–13. This demonstrated the clinical feasibility and improved diagnostic accuracy of integrated CTA and PET perfusion imaging over either imaging modality alone for the detection of hemodynamically significant coronary stenosis defined by invasive angiography and FFR measurements in patients with intermediate risk of CAD.

    Article  PubMed  CAS  Google Scholar 

  39. Sato A, Nozato T, Hikita H, Miyazaki S, Takahashi Y, Kuwahara T, et al. Incremental value of combining 64-slice computed tomography angiography with stress nuclear myocardial perfusion imaging to improve noninvasive detection of coronary artery disease. J Nucl Cardiol. 2010;17:19–26.

    Article  PubMed  Google Scholar 

  40. Gaemperli O, Schepis T, Valenta I, Husmann L, Scheffel H, Duerst V, et al. Cardiac image fusion from standalone SPECT and CT: clinical experience. J Nucl Med. 2007;48:696–703.

    Article  PubMed  Google Scholar 

  41. Santana CA, Garcia EV, Faber TL, Sirineni GK, Esteves FP, Sanyal R, et al. Diagnostic performance of fusion of myocardial perfusion imaging (MPI) and computed tomography coronary angiography. J Nucl Cardiol. 2009;16:201–11.

    Article  PubMed  Google Scholar 

  42. Slomka PJ, Cheng VY, Dey D, Woo J, Ramesh A, Van Kriekinge S, et al. Quantitative analysis of myocardial perfusion SPECT anatomically guided by coregistered 64-slice coronary CT angiography. J Nucl Med. 2009;50:1621–30.

    Article  PubMed  Google Scholar 

  43. •• van Werkhoven JM, Schuijf JD, Gaemperli O, Jukema JW, Boersma E, Wijns W, Stolzmann P, Alkadhi H, Valenta I, Stokkel MP, Kroft LJ, de Roos A, Pundziute G, Scholte A, van der Wall EE, Kaufmann PA, Bax JJ. Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 2009;53:623–32. This demonstrated the prognostic value of combined CTA and perfusion imaging over myocardial perfusion imaging alone in patients at intermediate risk of CAD.

    Article  PubMed  Google Scholar 

  44. Pazhenkottil AP, Nkoulou RN, Ghadri JR, Herzog BA, Buechel RR, Küest SM, et al. Prognostic value of cardiac hybrid imaging integrating single-photon emission computed tomography with coronary computed tomography angiography. Eur Heart J. 2011;32:1465–71.

    Article  PubMed  Google Scholar 

  45. Pundziute G, Schuijf JD, Jukema JW, Boersma E, de Roos A, van der Wall EE, et al. Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol. 2007;49:62–70.

    Article  PubMed  Google Scholar 

  46. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.

    Article  PubMed  Google Scholar 

  47. Pazhenkottil AP, Nkoulou RN, Ghadri J-R, Herzog BA, Kuest SM, Husmann L, Wolfrum M, Goetti R, Buechel RR, Gaemperli O, Luscher TF, Kaufmann PA. Impact of cardiac hybrid single-photon emission computed tomography/computed tomography imaging on choice of treatment strategy in coronary artery disease. Eur Heart J 2011; (in press).

  48. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116:1290–305.

    Article  PubMed  Google Scholar 

  49. Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301:500–7.

    Article  PubMed  CAS  Google Scholar 

  50. Leipsic J, Labounty TM, Heilbron B, Min JK, Mancini GB, Lin FY, et al. Estimated radiation dose reduction using adaptive statistical iterative reconstruction in coronary CT angiography: the ERASIR study. AJR Am J Roentgenol. 2010;195:655–60.

    Article  PubMed  Google Scholar 

  51. Husmann L, Valenta I, Gaemperli O, et al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J. 2008;29(2):191–7.

    Article  PubMed  Google Scholar 

  52. Achenbach S, Marwan M, Ropers D, et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J;31(3):340–6.

  53. Saraste A, Nekolla SG, Schwaiger M. Cardiovascular molecular imaging: an overview. Cardiovasc Res. 2009;50:1088–94.

    Google Scholar 

  54. Nahrendorf M, Sosnovik DE, French BA, Swirski FK, Bengel F, Sadeghi MM, et al. Multimodality cardiovascular molecular imaging, part II. Circ Cardiovasc Imaging. 2009;2:56–70.

    Article  PubMed  Google Scholar 

  55. Rudd JH, Narula J, Strauss HW, Virmani R, Machac J, Klimas M, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J Am Coll Cardiol. 2010;55:2527–35.

    Article  PubMed  Google Scholar 

  56. Abdelbaky A, Tawakol A. Noninvasive positron emission tomography imaging of coronary arterial inflammation. Curr Cardiovasc Imaging Rep. 2011;4:41–9.

    Article  PubMed  Google Scholar 

  57. Kramer CM, Sinusas AJ, Sosnovik DE, French BA, Bengel FM. Multimodality imaging of myocardial injury and remodeling. J Nucl Med. 2010;51:107S–21S.

    Article  PubMed  Google Scholar 

  58. Naresh NK, Ben-Mordechai T, Leor J, Epstein FH. Molecular imaging of healing after myocardial infarction. Curr Cardiovasc Imaging Rep. 2011;4:63–76.

    Article  PubMed  Google Scholar 

  59. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  60. Knuuti J, Bengel FM. Positron emission tomography and molecular imaging. Heart. 2008;94:360–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from The Academy of Finland Centre of Excellence in Molecular Imaging in Cardiovascular and Metabolic Research, Helsinki, Finland and The Turku Collegium for Science and Medicine of University of Turku, Turku, Finland.

Disclosure

Conflicts of interest: A. Saraste: none; J. Knuuti: has been a consultant for Lantheus Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhani Knuuti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saraste, A., Knuuti, J. Cardiac PET, CT, and MR: What Are the Advantages of Hybrid Imaging?. Curr Cardiol Rep 14, 24–31 (2012). https://doi.org/10.1007/s11886-011-0231-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-011-0231-0

Keywords

Navigation