Skip to main content
Log in

Metallic materials for structural applications beyond nickel-based superalloys

  • Refractory Metals Research / Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper reviews our current research activities on developing new multiphase metallic materials for structural applications with a temperature capability beyond 1,200°C. Two promising material systems have been chosen: first, alloys in the system Mo-Si-B which have demonstrated potential due to their high melting point of around 2,000°C and due to the formation of a protecting borosilicate glass layer on the surface at temperatures exceeding 900°C; and second, novel Co-Re-based alloys which have been chosen as a model system for complete miscibility between the elements cobalt and rhenium, offering the possibility of continuous increases of the melting point of the alloy through rhenium additions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cao and T.M. Pollock, Metall. Mater. Trans. A, 39A(1) (2008), pp. 39–49.

    Article  ADS  CAS  Google Scholar 

  2. F. Mücklich, N. Ilic, and K. Woll, Intermetallics, 16(5) (2008), pp. 593–608.

    Article  Google Scholar 

  3. J. Sato et al., Science, 312 (2006), pp. 90–91.

    Article  PubMed  ADS  CAS  Google Scholar 

  4. A. Suzuki and T.M. Pollock, Acta Mater., 56(6) (2008), pp. 1288–1297.

    Article  CAS  Google Scholar 

  5. M. Wenderoth et al., Intermetallics, 15(4) (2007), pp. 539–549.

    Article  CAS  Google Scholar 

  6. Y. Yamabe-Mitarai et al., JOM, 56(9) (2004), pp. 34–39.

    Article  CAS  Google Scholar 

  7. B.P. Bewlay et al., MRS Bulletin 28(9) (2003), pp. 646–653.

    CAS  Google Scholar 

  8. N. Sekido et al., J. All. Comp., 425(1–2) (2006), pp. 223–229.

    Article  CAS  Google Scholar 

  9. P. Jéhanno et al., Metall. Mater. Trans., 36A(3) (2005), pp. 515–523.

    Article  Google Scholar 

  10. D.M. Dimiduk and J.H. Perepezko, MRS Bulletin, 28(9) (2003), pp. 639–645.

    CAS  Google Scholar 

  11. J.H. Schneibel et al., Metall. Mater. Trans., 36A(3) (2005), pp. 525–531.

    Article  CAS  Google Scholar 

  12. K. Yoshimi et al., Intermetallics, 11(8) (2003), pp. 787–794.

    Article  CAS  Google Scholar 

  13. M. Krüger et al., Intermetallics 16(7) (2008), pp. 933–941.

    Article  Google Scholar 

  14. P. Jéhanno et al., Scripta Mater. 55(6) (2006), pp. 525–531.

    Article  Google Scholar 

  15. E.M. Sokolovskaya et al., J. Less-Common Metals, 124 (1986), pp. L5–L7.

    Article  CAS  Google Scholar 

  16. J. Rösler, D. Mukherji, and T. Baranski, Adv. Eng. Mater., 9(10) (2007), pp. 876–881.

    Article  Google Scholar 

  17. T.A. Parthasarathy, M. Mendiratta, and D.M. Dimiduk, Acta Materialia, 50(7) (2002), pp. 1857–1866.

    Article  CAS  Google Scholar 

  18. D.M. Berczik, U.S. patent 5,595,616 (1997).

  19. P. Jéhanno et al., Powder Met., 51(2) (2008), pp. 99–102.

    Article  Google Scholar 

  20. P. Jéhanno, M. Heilmaier, and H. Kestler, Intermetallics, 12(7–9) (2004), pp. 1005–1009.

    Article  Google Scholar 

  21. R. Völkl et al., Mat. Sci. Eng. A, 483–484 (2008), pp. 587–589.

    Article  Google Scholar 

  22. L. Northcott, Molybdenum (New York: Academic Press Inc., 1956).

    Google Scholar 

  23. N. Birks and G.H. Meier, Introduction to High Temperature Oxidation of Metals (London: E. Arnolds Ltd., 1983).

    Google Scholar 

  24. J.H. Perepezko, R. Sakidja, and S. Kim, Mat. Res. Soc. Symp. Proc., Vol. 646 (Warrendale, PA: Materials Research Society, 2001), N4.5.1.

    Google Scholar 

  25. S.R. Woodard et al., EU patent 1,382,700 B1 (2008).

  26. S. Burk et al., “Effect of Zr on the High-Temperature Oxidation Behaviour of Mo-Si-B Alloys,” submitted to Oxidation of Metals (2009).

  27. D.-B. Lee and G. Simkovich, Oxid. Met., 31 (1989), pp. 265–274.

    Article  CAS  Google Scholar 

  28. R. Sakidja and J.H. Perepezko, Metall. Mater. Trans., 36A(3) (2005), pp. 507–513.

    Article  CAS  Google Scholar 

  29. A. Hässner and W. Lange, Phys. Status Solidi, 8 (1965), p. 77.

    Article  Google Scholar 

  30. P. Jéhanno et al., Mater. Sci. Eng., A463 (2007), pp. 216–223.

    Google Scholar 

  31. M. Heilmaier et al., Mat. Res. Soc. Symp. Proc., Vol. 1128 (Warrendale, PA: Materials Research Society, 2009), p. U07–07.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heilmaier, M., Krüger, M., Saage, H. et al. Metallic materials for structural applications beyond nickel-based superalloys. JOM 61, 61–67 (2009). https://doi.org/10.1007/s11837-009-0106-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0106-7

Keywords

Navigation