Skip to main content

Advertisement

Log in

Towards better insect management strategy: restriction of insecticidal gene expression to biting sites in transgenic cotton

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Most of the commercialized Bt crops express cry genes under 35S promoter that induces strong gene expression in all plant parts. However, targeted foreign gene expression in plants is esteemed more important as public may be likely to accept ‘less intrusive’ expression of transgene. We developed plant expression constructs harboring cry1Ac gene under control of wound-inducible promoter (AoPR1) to confine Bt gene expression in insect wounding parts of the plants in comparison with cry1Ac gene under the control of 35S promoter. The constructs were used to transform four Turkish cotton cultivars (GSN-12, STN-468, Ozbek-100 and Ayhan-107) through Agrobacterium tumefaciens strains GV2260 containing binary vectors p35SAcBAR.101 and AoPR1AcBAR.101 harboring cry1Ac gene under control of 35S and AoPR1, respectively. Phosphinothricin (PPT) was used at concentration of 5 mg L−1 for selection of primary transformants. The primary transformants were analyzed for transgene presence and expression standard molecular techniques. The transformants exhibited appreciable mortality rates against larvae of Spodoptera exigua and S. littoralis. It was found that mechanical wounding of T 1 transgenic plants was effective in inducing expression of cry1Ac protein as accumulated levels of cry1Ac protein increased during post-wounding period. We conclude that use of wound-inducible promoter to drive insecticidal gene(s) can be regarded as a valuable insect-resistant management strategy since the promoter activity is limited to insect biting sites of plant. There is no Bt toxin accumulation in unwounded plant organs, seed and crop residues, cotton products and by-products, thus minimizing food and environmental concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andow DA, Ives AR (2002) Monitoring and adaptive resistance management. Ecol Appl 12:1378–1390

    Article  Google Scholar 

  • Bajwa KS, Shahid AA, Rao AQ, Kiani MS, Ashraf MA, Dahab AA, Bakhsh A, Latif A, Khan MAU, Puspito AN, Aftab A, Bashir A, Husnain T (2013) Expression of Calotropis procera expansin gene CpEXPA3 enhances cotton fibre strength. Aus J Crop Sci 7:206–212

    CAS  Google Scholar 

  • Bakhsh A, Rao AQ, Shahid AA, Husnain T, Riazuddin S (2009) Insect resistance and risk assessment studies in advance lines of Bt cotton harboring Cry1Ac and Cry2A genes. Am Eur J Agric Environ Sci 6:1–11

    CAS  Google Scholar 

  • Bakhsh A, Rao AQ, Shamim HH (2011) A minireview: rubisco small subunit as a strong, green tissue-specific promoters. Arch Biol Sci 63:299–307

    Article  Google Scholar 

  • Bakhsh A, Siddique S, Husnain T (2012) A molecular approach to combat spatio-temporal variation in insecticidal gene (Cry1Ac) expression in cotton. Euphytica 183:65–74

    Article  CAS  Google Scholar 

  • Bakhsh A, Khabbazi SD, Baloch FS, Demirel U, Çalişkan ME, Hatipoğlu R, Özcan S, Özkan H (2015) Insect resistant transgenic crops: retrospects and challenges. Turk J Agric For. doi:10.3906/tar-1408-69

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotech 23:57–62

    Article  CAS  Google Scholar 

  • Breitler JC, Vassal JM, Catala MDM, Meynard D, Marfa V, Mele E et al (2004) Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: protection and transgene expression under Mediterranean field conditions. Plant Biotechnol J 2:417–430

    Article  CAS  PubMed  Google Scholar 

  • Cai M, Wei J, Li XH, Xu CG, Wang SP (2007) A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific gene expression in transgenic plants. Plant Biotechnol J 5:664–674

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Shelton AM, Earle ED (2001) Gene expression and insect resistance in transgenic broccoli containing a Bacillus thuringiensis cry1Ab gene with the chemically inducible PR-1a promoter. Mol Breed 8:207–216

    Article  CAS  Google Scholar 

  • Cheng X, Sardana R, Kaplan H, Altosaar I (1998) Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c)genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci USA 95:2767–2772. doi:10.1073/pnas.95.6.2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J 33:19–46

    Article  PubMed  Google Scholar 

  • Cousins YL, Lyon BR, Liewelly DJ (1991) Transformation of Australian cotton cultivars: prospects for cotton improvement. Aust J Plant Physiol 18:481–491

    Article  CAS  Google Scholar 

  • EJF (2007) The deadly chemicals in cotton, environmental justice foundation in collaboration with Pesticide Action Network UK, London. ISBN No. 1-904523-10-2

  • Firek S, Ozcan S, Warner SA, Draper J (1993) A wound-induced promoter driving NPT-II expression limited to dedifferentiated cells at wound sites is sufficient to allow selection of transgenic shoots. Plant Mol Biol 22:129–142

    Article  CAS  PubMed  Google Scholar 

  • Frutos R, Rang C, Royer M (1999) Managing insect resistance to plants producing Bacillus thuringiensis toxins. Crit Rev Biotech 19:227–276

    Article  CAS  Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6:e22629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould J, Magallanes-Cedeno M (1998) Adaptation of cotton shoot apex culture to agrobacterium-mediated transformation. Plant Mol Biol Repor 16:1–10

    Article  Google Scholar 

  • Gulbitti-Onarici S, Zaidi MA, Taga I, Ozcan S, Altosaar I (2009) Expression of Cry1Ac in transgenic tobacco plants under the control of a wound-inducible promoter (AoPR1) isolated from Asparagus officinalis to control Heliothis virescens and Manduca sexta. Mol Biotechnol 42:341–349

    Article  CAS  PubMed  Google Scholar 

  • Harikrishna K, Paul E, Darby R, Draper J (1991) Wound response in mechanically isolated asparagus mesophyll cells: a model monocotyledon system. J Exp Bot 42:791–799

    Article  CAS  Google Scholar 

  • High SM, Cohen MB, Shu QY, Altosaar I (2004) Achieving successful deployment of Bt rice. Trends Plant Sci 9:286–292

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Buschman LL, Higgins RA, McGaughey WH (1999) Inheritance to Bacillus thuringiensis toxin (Dispel ES) in European corn borer. Sci 284:965–967

    Article  CAS  Google Scholar 

  • Hussain T, Bakhsh A, Munir B, Hassan S, Rao AQ, Shahid AA, Rashid B, Husnain T (2014) Mendelian segregation pattern and expression studies of insecticidal gene (cry1Ac) in insect resistant cotton progeny. Emir J Food Agric 26:706–715

    Article  Google Scholar 

  • Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from Bilberry (Vaccinium myrtillus L.) fruit. Mol Biol 19:201–203

    CAS  Google Scholar 

  • Jenkins JN, Mccarty JC, Buehler RE, Kiser J, Williams C, Wofford T (1997) Resistance of cotton with endotoxin genes from Bacillus thuringiensis var. kurstaki on selected Lepidopteran insects. Agron J 89:768–780

    Article  Google Scholar 

  • Jin RG, Liu YB, Tabashnik BE, Borthakur D (2000) Development of transgenic cabbage (Brassica oleracea var Capitata) for insect resistance by Agrobacterium tumefaciens mediated transformation. In Vitro Cell Dev Biol Plant 36:231–237

    Article  CAS  Google Scholar 

  • Khan GA, Bakhsh A, Riazuddin S, Husnain T (2011) Introduction of cry1Ab gene into cotton (Gossypium hirsutum) enhances resistance against Lepidopteran pest (Helicoverpa armigera). Spanish J Agr Res 9:296–300

    Article  Google Scholar 

  • Kim S, Kim C, Li W, Kim T, Li Y, Zaidi MA et al (2008) Inheritance and field performance of transgenic Korean Bt rice lines resistant to rice yellow stem borer. Euphytica 164:829–839

    Article  Google Scholar 

  • Kuiper HA, Kleter GA, Noteborn HP, Kok EJ (2001) Assessment of the food safety issues related to genetically modified foods. Plant J 27:503–528

    Article  CAS  PubMed  Google Scholar 

  • Li YE, Chen ZX, Wu X, Li SJ, Jiao GL, Wu JH, Fan XP, Meng JH, Zhu Z, Wang W, Zhu Y, Xu HL, Xiao GF, Li XH (1998) Obtaining transgenic cotton plants with cowpea trypsin inhibitor gene. Acta Gossypii Sinica 10:237–243

    Google Scholar 

  • Li H, Jinhua L, Hemphill JK, Wang JT, Gould J (2001) A rapid and high yielding DNA miniprep for cotton (Gossypium spp.). Plant Mol Biol Rep 19:183

    Article  CAS  Google Scholar 

  • Maqbool A, Abbas W, Rao AQ, Irfan M, Zahur M, Bakhsh A, Riazuddin S, Husnain T (2010) Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum L. Biotechnol Progress 26:21–25

    CAS  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. sculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Sturgess FJ, Farrell GG, Draper J (2004) The AoPR10 promoter and certain endogenous PR10 genes respond to oxidative signals in Arabidopsis. Mol Plant Pathol 5:435–451

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ni WC, Zhang ZL, Guo SD (1998) Development of transgenic insect-resistant cotton plants. Sci Agric Sinica 31:8–13

    CAS  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  CAS  PubMed  Google Scholar 

  • Olsen A (2013) Cotton. Pesticide action network. http://www.panna.org. Retrieved on 2 April 2015

  • Özcan S, Firek S, Draper J (1993) Selectable marker genes engineered for specific expression in target cells for plant transformation. Nat Biotech 11:218–221

    Article  Google Scholar 

  • Paul E, Harikrishna K, Fioroni O, Draper J (1989) Dedifferentiation of Asparagus officinalis L. mesophyll cells during initiation of cell cultures. Plant Sci 65:111–117

    Article  Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong RL, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1991) Insect resistant cotton plants. Biotechnol 8:939–943

    Article  Google Scholar 

  • Rao AQ, Bakhsh A, Nasir IA, Riazuddin S, Husnain T (2011) Phytochrome B mRNA expression enhances biomass yield and physiology of cotton plants. Afr J Biotechnol 10:1818–1826

    CAS  Google Scholar 

  • Rashid B, Saleem Z, Husnain T, Riazuddin S (2008) Transformation and inheritance of Bt genes in Gossypium hirsutum. J Plant Biol 51:248–254

    Article  CAS  Google Scholar 

  • Schrammeijer B, Sijmons PC, Van Den Elzen PJM, Heokema A (1990) Meristem transformation of sunflower via Agrobacterium. Plant Cell Report 9:55–60

    Article  CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Zhao RT (2002) Economic, ecological, food safety and social consequences of the development of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Smith EF, Towsend CO (1997) A plant tumor of bacterial origin. Sci 25:671–673

    Article  Google Scholar 

  • Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

  • Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Kanost MR, Bohnert HJ (1995) Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep 14:758–762

    Article  CAS  PubMed  Google Scholar 

  • Tohidfar M, Ghareyazie B, Mosavi M, Yazdani S, Golabchian R (2008) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a synthetic cry1Ab gene for enhanced resistance against Heliothis armigera. Iran J Biotechnol 6:164–173

    CAS  Google Scholar 

  • Van den Berg J, Hilbeck A, Bøhn T (2013) Pest resistance to Cry 1Ab Bt maize: field resistance, contributing factors and lessons from South Africa. Crop Prot 54:154–160

  • Wang W, Zhu Z, Deng CY (1998) Obtaining of pest resistant cotton by transforming mediated Agrobacterium. In: New frontiers in cotton research, World cotton research conference 2, Athens, 1998, pp 119

  • Warner SA, Scott R, Draper J (1992) Characterization of a wound-induced transcript from the monocot asparagus that shares similarity with a class of intracellular pathogenesis-related (PR) proteins. Plant Mol Biol 19:555–561

    Article  CAS  PubMed  Google Scholar 

  • Warner SA, Scott R, Draper J (1993) Isolation of an asparagus intracellular PR gene (AoPR1) wound-responsive promoter by the inverse polymerase chain reaction and its characterization in transgenic tobacco. Plant J 3:191–201

    Article  CAS  PubMed  Google Scholar 

  • Xie DX, Fan YL, Ni WC, Huang JQ (1991) Transformed Bacillus thuringiensis crystal protein gene into cotton plants. China Sci B 4:367–373

    Google Scholar 

  • Zhang H, Yin W, Zhao J, Jin L, Yang Y, Wu S, Tabashnik BE, Wu Y (2011) Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS ONE 6:e22874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work on development of transgenic cotton in our laboratory is being supported by grants from Scientific and Technological Research Council of Turkey TÜBİTAK (Project No. 111O254). The authors acknowledge contribution and support of TÜBİTAK. The authors are also thankful to Leicester University (UK) for giving permission to use AoPR1 promoter for research purposes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Allah Bakhsh or Sebahattin Özcan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anayol, E., Bakhsh, A., Karakoç, Ö.C. et al. Towards better insect management strategy: restriction of insecticidal gene expression to biting sites in transgenic cotton. Plant Biotechnol Rep 10, 83–94 (2016). https://doi.org/10.1007/s11816-016-0388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-016-0388-5

Keywords

Navigation