Skip to main content
Log in

Susceptibility of serum lipids to copper-induced peroxidation correlates with the level of high density lipoprotein cholesterol

  • Published:
Lipids

Abstract

As a first step in evaluating the significance of our recently developed method of monitoring the kinetics of copper-induced oxidation in unfractionated serum, we recorded the kinetics of lipid oxidation in the sera of 62 hyperlipidemic patients and analyzed the correlation between oxidation and lipid composition of the sera [high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, and triglycerides]. We used six factors to characterize the kinetics of oxidation, namely, the maximal absorbance of oxidation products (ODmax), the maximal rate of their production (V max), and the time at which the rate was maximal (t max) at two wave-lengths (245 nm, where 7-ketocholesterol and conjugated dienic hydroperoxides absorb intensely, and 268 nm, where the absorbance is mostly due to dienals). The major conclusions of our analyses are that: (i) Both ODmax and V max correlate positively with the sum of concentrations of the major oxidizable lipids, cholesterol, and cholesteryl esters. (ii). The value of t max, which is a measure of the lag preceding oxidation and therefore reflects the resistance of the serum lipids to copper-induced oxidation, exhibits a negative correlation with HDL cholesterol. Although this finding accords with the observation of shorter lags for HDL than for LDL, it is apparently inconsistent with the role of HDL as an antirisk factor in coronary heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HDL:

high density lipoprotein

LDL:

low density lipoprotein

ODmax :

maximal absorbance of oxidation products

PAF-AH:

platelet-activating factor-acetyl hydrolase

PUFA:

polyunsaturated fatty acids

t max :

time at which the rate of oxidation was maximal

TG:

triglycerides

V max :

maximal rate of oxidation products accumulation

References

  1. Regenstrom, J., Nilsson, J., Tornvall, P., Landou, C., and Hamsten, A. (1992) Susceptibility to Low Density Lipoprotein Oxidation and Coronary Atherosclerosis in Man, Lancet 339, 1183–1186.

    Article  Google Scholar 

  2. Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., and Witzum, J.L. (1989) Beyond Cholesterol. Modifications of Low Density Lipoprotein That Increase Its Atherogenicity, N. Engl. J. Med. 320, 915–924.

    Article  PubMed  CAS  Google Scholar 

  3. Esterbauer, H., Gebicky, J., Puhl, H., and Jurgens, G. (1992) The Role of Lipid Peroxidation and Antioxidants in Oxidative Modification of LDL, Free Radicals Biol. Med. 13, 341–390.

    Article  CAS  Google Scholar 

  4. Suzukawa, M., Ishikawa, T., Yoshida, H., and Nakamura, H. (1995) Effect of in-vivo Supplementation with Low-Dose Vitamin E on Susceptibility of Low-Density Lipoprotein and High-Density Lipoprotein to Oxidative Modification, J. Amer. Coll. Nutrition 14, 46–52.

    CAS  Google Scholar 

  5. Bowry, V., Stanley, K., and Stocker, R. (1992) High Density Lipoprotein Is the Major Carrier of Lipid Hydroperoxides in Human Blood Plasma from Fasting Donors, Proc. Natl. Acad. Sci. USA 89, 10316–10320.

    Article  PubMed  CAS  Google Scholar 

  6. Schnitzer, E., Pinchuk, I., Fainaru, M., Schafer, Z., and Lichtenberg, D. (1995) Copper-Induced Lipid Oxidation in Unfractionated Plasma: the Lag Preceding Oxidation as a Measure of Oxidation-Resistance. Biochem. Biophys. Res. Commun. 216/3, 854–861.

    Article  Google Scholar 

  7. Mackness, M., Arrol, S., Abbot, C., and Durrington, P. (1993) Protection of Low-Density Lipoprotein Against Oxidative Modification by High-Density Lipoprotein Associated Paroxonase, Atherosclerosis 104, 129–135.

    Article  PubMed  CAS  Google Scholar 

  8. Nourooz-Zadeh, J., Tajaddini-Sarmadi, J., Ling, K.J.E., and Wolff, S. (1996) Low-Density Lipoprotein Is the Major Carrier of Lipid Hydroperoxides in Plasma, Biochem. J. 313, 781–786.

    PubMed  CAS  Google Scholar 

  9. Stafforini, D.M., Zimmerman, G.A., McIntyre, T.M., and Prescott, S.M. (1993) The Platelet Activating Factor Acetylhydrolase from Human Plasma Prevents Oxidative Modification of Low Density Lipoprotein, Trans. Am. Assoc. Physiol. 106, 44–63.

    Google Scholar 

  10. Parthasarathy, S., Barnett, J., and Fong, L.G. (1990) High-Density Lipoprotein Inhibits the Oxidative Modification of Low-Density Lipoprotein, Biochim. Biophys. Acta 1044, 275–283.

    PubMed  CAS  Google Scholar 

  11. Schnitzer, E., Pinchuk, I., Bor, A., Fainaru, M., Schafer, Z., and Lichtenberg, D. Lipid Oxidation in Unfractionated Serum and Plasma, Chem. Phys. Lipids. 92, 151–170 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. Pinchuk, I., and Lichtenberg, D. (1996) Continuous Monitoring of Intermediates and Final Products of Oxidation of Low Density Lipoprotein by Means of UV-Spectroscopy, Free Radicals Res. 24, 351–360.

    CAS  Google Scholar 

  13. Esterbauer, H., and Jurgens, G. (1993) Mechanistic and Genetic Aspects of Susceptibility of LDL to Oxidation, Curr. Opin. Lipid. 4, 114–124.

    Article  CAS  Google Scholar 

  14. Kritharides, L., Jessup, W., and Dean, R.T. (1995) LDTA Differentially and Incompletely Inhibits Components of Prolonged Cell-Mediated Oxidation of Low-Density Lipoprotein, Free Radicals Res. 22, 399–417.

    Article  CAS  Google Scholar 

  15. Simionescu, N., Vasile, E., Lupu, F., Popescu, G., and Simionescu, M. (1986) Prelesional Events in Atherogenesis: Accumulation of Extracellular Cholesterol-Rich Liposomes in the Arterial Intima of Cardiac Valves of the Hyperlipidemic Rabbit, Am. J. Pathol. 123, 1109–1125.

    Google Scholar 

  16. Navab, M., Berliner, J.A., Watson, A.D., Hama, S.Y., Territo, M.C., Luisis, A.J., Shih, D.M., van Lenten, B.J., Frank, J.S., Derner, L.L., Edwards, P.A., and Fogelman, A.M. (1996) The Yin and Yang of Oxidation in the Development of Fatty Streak, Arterioscler. Thromb. Vasc. Biol. 16, 831–842.

    PubMed  CAS  Google Scholar 

  17. Hofer, G., Lichtenberg, D., Kostner, G.M., and Hermetter, A. (1996) Oxidation of Fluorescent Glycero- and Sphingolipids in Human Plasma Lipoproteins: Alkenylacyl Subclasses Are Preferred Targets, Clin. Biochem. 29, 445–450.

    Article  PubMed  CAS  Google Scholar 

  18. Hayek, T., Oiknine, J., Dankner, G., Brook, J.G., and Aviram, M. (1995) HDL Apolipoprotein A-1 Attenuates Oxidative Modification of Low Density Lipoprotein: Studies in Transgenic Mice, Eur. J. Clin. Chem. Clin. Biochem. 33, 721–725.

    PubMed  CAS  Google Scholar 

  19. Van Lenten, B.J., Hama, S.Y., Teng-Shih, P., Navab, M., and Fogelman, A.M. (1998) HDL Oxidized by Artery Wall Cells Not Only Enhances LDL Oxidation but Poorly Promotes Cholesterol Efflux from Macrophages, Circulation 98, 2743, Suppl. S.

    Google Scholar 

  20. Stemler, K.E., Stafforini, D.M., Prescott, S.M., and McIntyre, T.M. (1991) Human Plasma Platelet Activating Factor Acetylhydrolase. Oxidatively Fragmented Phospholipids as Substrates, J. Biol. Chem. 266, 11095–11103.

    Google Scholar 

  21. Steinbrecher, U.P., and Pritchard, P.H. (1989) Hydrolysis of Phosphatidylcholine During LDL Oxidation is Mediated by Platelet-Activating Factor Acetylhydrolase, J. Lipid Res. 30, 305–315.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lichtenberg.

About this article

Cite this article

Shimonov, M., Pinchuk, I., Bor, A. et al. Susceptibility of serum lipids to copper-induced peroxidation correlates with the level of high density lipoprotein cholesterol. Lipids 34, 255–259 (1999). https://doi.org/10.1007/s11745-999-0361-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-999-0361-0

Keywords

Navigation