Skip to main content
Log in

Natural neo acids and neo alkanes: Their analogs and derivatives

  • Review
  • Published:
Lipids

Abstract

This review presents more than 260 naturally occurring (as well as 47 synthesized) neo fatty (carboxylic) acids, neo alkanes, and their analogs and derivatives, isolated and identified from plants, algae, fungi, marine invertebrates, and microorganisms, that demonstrate different biological activities. These natural metabolites are good prospects for future chemical preparations as antioxidants, and also as anticancer, antimicrobial, and antibacterial agents. Described also are some synthetic bioactive compounds containing a tertiary butyl group(s) that have shown high anticancer, antifungal, and other activities. Applications of some neo fatty (carboxylic) acid derivatives in cosmetic, agronomic, and pharmaceutical industries also are considered. This is the first review to consider naturally occurring neo fatty (carboxylic) acids, neo alkanes, and other metabolites containing a tertiary butyl group(s) [or tert-butyl unit(s)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6FP:

6-formylpterin

CDH:

choline dehydrogenase

DC-A:

discodermin A

EC50 :

concentration having an effect on 50% of the population

LC50 :

concentration having a lethal effect on 50% of the population

PAF:

platelet-activating factor

References

  1. Ackman, R.G. (1989) Fatty Acids, in Marine Biogenic Lipids, Fats, and Oil (Ackman, R.G., ed.), Vol. 1, pp. 103–137, CRC Press, Boca Raton, Florida.

    Google Scholar 

  2. Gunstone, F. (1999) Fatty Acid and Lipid Chemistry, 252 pp., Aspen, Gaithersburg, Maryland.

    Google Scholar 

  3. Minnikin, D.E., Kremer, L., Dover, L.G., and Besra, G.S. (2002) The Methyl-Branched Fortifications of Mycobacterium tuberculosis, Chem. Biol. 9, 545–553.

    Article  PubMed  CAS  Google Scholar 

  4. Dembitsky, V.M. (2005) Astonishing Diversity of Natural Surfactants. 3. Carotenoid Glycosides and Isoprenoid Glycolipids, Lipids 40, 535–557.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson, R.W., and Fritz, E. (eds). (1988) Fatty Acids in Industry: Processes, Properties, Derivatives, Applications, 667 pp., Marcel Dekker, New York.

    Google Scholar 

  6. Wickson, E.J., and Moore, R.R. (1964) Now: Neo-acids Go Commercial, Hydrocarbon Process, Pet. Refin. 43, 185–190.

    CAS  Google Scholar 

  7. Wickson, E.J. (1965) Fatty Acids: Trialkylacetic Acids, in Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed., pp. 851–856. Wiley, New York.

    Google Scholar 

  8. Fefer, M., and Rutkowski, A.J. (1968) Neo Acids. Chemistry and Applications, J. Am. Oil Chem. Soc. 45, 5–10.

    CAS  Google Scholar 

  9. Fefer, M. (1978) Neo Acids: Synthetic Highly Branched Organic Acids, J. Am. Oil Chem. Soc. 55, 342A-345A.

    CAS  Google Scholar 

  10. Parker, J.W., Ingham, M.P., Turner, R.J., and Woode, J.H. (1978) Carboxylic Acids, Trialkylacetic Acids, in Kirk-Othmer Encyclopedia of Chemical Technology (Grayson, M., and Eckroth, D., eds.), 3rd ed., pp. 863–871. Wiley, New York.

    Google Scholar 

  11. Sarginson, N.J. (2001) Neoacids C5−C28, Press-Release, pp. 1–70, Exxon Mobil Chemical Co., Houston.

    Google Scholar 

  12. Dembitsky, V.M., and Srebnik, M. (2002) The Use of Serially Coupled Capillary Columns with Different Polarity of Stationary Phases for the Separation Natural Complex Volatile Mixture of the Marine Red alga Corallina elongata, Biochemistry (Moscow) 67, 1289–1296.

    Article  Google Scholar 

  13. Dembitsky, V.M., Dor, I., Shkrob, I., and Aki, M. (2001) Branched Alkanes and Other Apolar Compounds Produced by the Cyanobacterium Microcoleus vaginatus from the Negev Desert, Russ. J. Bioorganic Chem. 27, 110–119.

    Article  CAS  Google Scholar 

  14. Van Beilen, J.B., Kingma, J., and Witholt, B. (1994) Substrate Specificity of the Alkane Hydroxylase System of Pseudomonas oleovorans GPo1, Enzyme Microb. Technol. 16, 904–911.

    Article  Google Scholar 

  15. Solano-Serena, F., Marchal, R., and Vandecasteele, J.-P. (2000) Procedures for the Bacterial Biodegradation of Isoalkene Contaminants in Waters and Soil, 10 pp., German Patent: DE 10011228 A1 20000914, Application: DE 2000-10011228, 20000308.

  16. Brocks, J.J., and Pearson, A. (2005) Building the Biomarker Tree of Life, Rev. Mineral. Geochem. 59, 233–258.

    Article  CAS  Google Scholar 

  17. Kenig, F., Simons, D.J., Crich, D., Cowen, J.P., Ventura, G.T., Rehbein-Khalily, T., Brown, T.C., and Anderson, K.B. (2003) Branched Aliphatic Alkanes with Quaternary Substituted Carbon Atoms in Modern and Ancient Geologic Samples, Proc. Natl. Acad. Sci. USA 100, 12554–12558.

    Article  PubMed  CAS  Google Scholar 

  18. Alscher, R.G., and Hess, J.L. (eds.) (1993) Antioxidants in Higher Plants, 174 pp. CRC Press, Boca Raton.

    Google Scholar 

  19. Gorog, S. (2000) Identification and Determination of Impurities in Drugs, 748 pp., Elsevier, Amsterdam.

    Google Scholar 

  20. Supriyadi, S., Suzuki, M., Yoshida, K., Muto, T., Fujita, A., and Watanabe, N. (2002) Changes in the Volatile Compounds and in the Chemical and Physical Properties of Snake Fruit (Salacca edulis Reinw.) cv. Pondoh During Maturation, J. Agric. Food Chem. 50, 7627–7633.

    Article  PubMed  CAS  Google Scholar 

  21. Yamamoto, Y., and Ichimura, N. (1992) Volatile Constituents of Peach, Koryo 173, 97–104.

    CAS  Google Scholar 

  22. Shimizu, J., and Watanabe, M. (1982) Volatile Components Identified in the Phenolic Fractions of Wines from Koshu and Zenkoji Grapes, Agric. Biol. Chem. 46, 1447–1452.

    CAS  Google Scholar 

  23. Jurenitsch, J., David, M., Heresch, F., and Kubelka W. (1979) Detection and Identification of New Pungent Compounds in Fruits of Capsicum, Planta Med. 36, 61–67.

    PubMed  CAS  Google Scholar 

  24. Chung, H.Y., Fung, P.K., and Kim, J.-S. (2005) Aroma Impact Components in Commercial Plain Sufu, J. Agric. Food Chem. 53, 1684–1691.

    Article  PubMed  CAS  Google Scholar 

  25. Seligman, R.B., and Keritsis, G.D. (1980) Smoking Composition, 41 pp., German Patent: DE 2931281 19800214. Application: DE 79-2931281 19790801

  26. Wahlberg, I., Karlsson, K., Austin, D.J., Junker, N., Roeraade, J., Enzell, C.R., and Johnson, W.H. (1977) Tobacco Chemistry. Part 38. Effects of Flue-Curing and Aging on the Volatile. Neutral and Acidic Constituents of Virginia Tobacco, Phytochemistry 16, 1217–1231.

    Article  CAS  Google Scholar 

  27. Kato, Y. (1996) Flavor of Wheat Flour and Butter Mixture, and Roux Cooked to 100°C, Nippon Kasei Gakkaishi 47, 231–236.

    CAS  Google Scholar 

  28. Ma, Y., Zhou, S., Chen, J., and Hu, X. (2004) Analysis of Aromatic Compounds in Ripe and Unripe Golden Empress Melon (Cucumis melon L.) by Solid Phase Microextraction, Shipin Kexue (Beijing, China) 25, 136–139.

    CAS  Google Scholar 

  29. Liu, Y., Wang, L., Yuan, S., and Tang, J. (2001) Analysis of Fragrance Components of Michelia alba by Solid Phase Microextraction and GC/MS, Wuxi Qinggong Daxue Xuebao 20, 427–429.

    CAS  Google Scholar 

  30. Teai, T., Claude-Lafontaine, A., Schippa, C., and Cozzolino, F. (2005) Volatile Compounds in Fresh Yellow Mombin Fruits (Spondias mombin L.) from French Polynesia, J. Essent. Oil Res. 17, 368–372.

    CAS  Google Scholar 

  31. Michihata, T., Yano, T., and Enomoto, T. (2002) Volatile Compounds of Headspace Gas in the Japanese Fish Sauce Ishiru, Biosci. Biotechnol. Biochem. 66, 2251–2255.

    Article  PubMed  CAS  Google Scholar 

  32. Peralta, R.R., Shimoda, M., and Osajima, Y. (1997) Comparison of Headspace Volatiles of Philippine Fish Sauces, Food Sci. Technol. Int. (Tokyo) 3, 49–52.

    CAS  Google Scholar 

  33. Shimoda, M., Peralta, R.R., and Osajima, Y. (1996) Headspace Gas Analysis of Fish Sauce, J. Agric. Food Chem. 44, 3601–3605.

    Article  CAS  Google Scholar 

  34. Cha, Y.J., Chadwallader, K.R., and Baek, H.H. (1993) Volatile Flavor Components in Snow Crab Cooker Effluent and Effluent Concentrate, J. Food Sci. 58, 525–530.

    Article  CAS  Google Scholar 

  35. Probian, C., Wulfing, A., and Harder, J. (2003) Anaerobic Mineralization of Quaternary Carbon Atoms: Isolation of Denitrifying Bacteria on Pivalic Acid (2.2-dimethylpropionic acid), Appl. Environ. Microbiol. 69, 1866–1870.

    Article  PubMed  CAS  Google Scholar 

  36. Solano-Serena, F., Marchal, R., Heiss, S., and Vandecasteele, J.-P. (2004) Degradation of Isooctane by Mycobacterium austroafricanum IFP 2173: Growth and Catabolic Pathway, J. Appl. Microbiol. 97, 629–639.

    Article  PubMed  CAS  Google Scholar 

  37. Gao, P., and Martin, J. (2002) Volatile Metabolites Produced by Three Strains of Stachybotrys chartarum Cultivated on Rice and Gypsum Board, Appl. Occup. Environ. Hyg. 17, 430–436.

    Article  PubMed  CAS  Google Scholar 

  38. Claeson, A.-S., Levin, J.-O., Blomquist, G., and Sunesson, A.-L. (2002) Volatile Metabolites from Microorganisms Grown on Humid Building Materials and Synthetic Media, J. Environ. Monit. 4, 667–672.

    Article  PubMed  CAS  Google Scholar 

  39. Wang, P., Wu, Y., and Ding, J. (1994) The Volatile Constituents of Hemerocallis citrina, Yunnan Zhi Wu Yan Jiu 16, 431–434.

    CAS  Google Scholar 

  40. Sadraei, H., Asghari, G.R., Hajhashemi, V., Kolagar, A., and Ebrahimi, M. (2001) Spasmolytic Activity of Essential Oil and Various Extracts of Ferula gummosa Boiss. on Ileum Contractions, Phytomedicine 8, 370–376.

    Article  PubMed  CAS  Google Scholar 

  41. Pierre, A., Le Quere, J.-L., Famelart, M.-H., Riaublanc, A., and Rousseau, F. (1998) Composition, Yield, Texture and Aroma Compounds of Goat Cheeses as Related to the A and O Variants of α s1-Casein in Milk, Lait (France) 78, 291–301.

    CAS  Google Scholar 

  42. Nuriev, A.N., and Efendiev, G.Kh. (1966) Organic Compounds Dissolved in Stratal Water of Petroleum Deposits, Dokl. Akad. Nauk Az. SSR 22, 29–31.

    CAS  Google Scholar 

  43. Shimoyama, A., Komiya, M., and Harada, K. (1991) Low Molecular Weight Monocarboxylic Acids and γ-Lactones in Neogene Sediments of the Shinjo Basin, Geochem. J. 25, 421–428.

    CAS  Google Scholar 

  44. Huang, Y., Wang, Y., Alexandre, M.R., Lee, T., Rose-Petruck, C., Fuller, M., and Pizzarello, S. (2005) Molecular and Compound-Specific Isotopic Characterization of Mono-carboxylic Acids in Carbonaceous Meteorites, Geochim. Cosmochim. Acta 69, 1073–1084.

    Article  CAS  Google Scholar 

  45. Naraoka, H., Shimoyama, A., and Harada, K. (1999) Molecular Distribution of Monocarboxylic Acids in Asuka Carbonaceous Chondrites from Antarctica, Origin Life Evol. Biosph. 29, 187–201.

    Article  CAS  Google Scholar 

  46. Yao, X.-D., Nie, Y.-M., and Nirmalendu, D.-G. (2004) GC/MS Analysis of Volatile Components of Echinacea Species, Guangxi Minzu Xueyuan Xuebao. Ziran Kexueban, 10, 78–83.

    CAS  Google Scholar 

  47. Yoshida, S., Tomono, N., Hamada, T., and Hasegawa, J. (2005) Hair Growth Stimulants Containing Sheep Wool Extracts, Japan Kokai Tokkyo Koho, 62 pp. Japanese Patent: JP 2005306771 A2 20051104. Application: JP 2004-125074 20040421.

  48. Finkelstein, U. (2005) Novel Inula viscosa Extracts and Their Use for Treatment of Arthritis. PCT Int. Appl., 37 pp., WO 2005117925 A1 20051215 Application: WO 2005-IL72 20050120.

  49. Zhang, X., Lin, Z., Jin, S., and Lin, Y. (1986) Composition of the Top Note of Osmanthus in Hangzhou, Gaodeng Xuexiao Huaxue Xuebao 7, 695–700.

    CAS  Google Scholar 

  50. Kim, Y.K., Chung, K.N., Ishi, H., and Muraki, S. (1986) Volatile Components of Pine Nuts, Han'guk Sik'um Kwahakhoechi 18, 105–109.

    CAS  Google Scholar 

  51. Dembitsky, V.M., Rezanka, T., and Srebnik, M. (2003) Lipid Compounds of Freshwater Sponges: Family Spongillidae, Class Demospongiae, Chem. Phys. Lipids 123, 117–155.

    Article  PubMed  CAS  Google Scholar 

  52. Garner, A.V., and Nalder, W.W. (1984) Lubricant Additive, 32 pp., Canadian Patent: CA 1177817 A1 19841113. Application: CA 83-425465 19830408.

  53. Siggelkow, B., Reimann, W., Leinweber, D., Neuhaus, U., and Braun, R. (2005) Demulsifiers for Blends of Petroleum Middle Distillates and Fuel Oils of Animal or Vegetable Origin, 18 pp., European Patent: EP 1555309 A1 20050720.

  54. Krull, M., Siggelkow, B., and Hess, M. (2005) Fuel Oils Comprising Middle Distillates and Oils of Vegetable or Animal Origin with Improved Cold Properties, 19 pp., European Patent: EP 1541664 A1 20050615.

  55. Degtyarenko, A.S., Shrekhtkha, R.M., and Leonovich, A.A. (1988) Fatty Acids in Extracts from Daphne bholua L., Izv. Vyssh. Uchebn. Zaved. Lesn. Zh. 5, 84–86.

    Google Scholar 

  56. Degtyarenko, A.S., Buinova, E.F., Pertsovskii, A.L., Izotova, L.V., Antonov, V.I., and Yagodin, V.I. (1988) Acids in Products of the Processing of Wood Greens and Bark of Fir and Cedar, Koksnes Kimija 2, 109–111.

    Google Scholar 

  57. Bardyshev, I.I., Degtyarenko, A.S., Pertsovskii, A.L., and Kryuk, S.I. (1981) chemical Composition of Higher Fatty and Resin Acids Isolated from Pinus sylvestris L. Needles, Koksnes Kimija 3, 102–104.

    Google Scholar 

  58. Bardyshev, I.I., and Kryuk, S.I. (1978) Chemical Nature of Fatty Acids of Natural Soviet Balsams and Rosins of Different Conifers, Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk 6, 87–93.

    Google Scholar 

  59. Bardyshev, I.I., Papanov, G.Ya., Ivanov, S.A., Kryuk, S.I., and Pertsovskii, A.L. (1971) Composition of Fatty Acids of Bulgarian Extractive Colophony and Pine Resin from Pinus silvestris and Pinus nigra, Nauchni Trudove na Visshiya Pedagogicheski Institut, Plovdiv, Matematika, Fizika, Khimiya, Biologiya 9, 95–99.

    CAS  Google Scholar 

  60. Bardyshev, I.I., and Kryuk, S.I. (1970) Separation of Individual Saturated Fatty Acids from Domestic Tall Oils, Vestsi Akad. Navuk BSSR, Ser. Khim. Navuk 5, 64–66.

    Google Scholar 

  61. Ignatyuk, L.N., and Isai, S.V. (1993) Lipid Component of Chitin and Chitosan Structures, Khim. Prir. Soedin. 4, 611–612.

    Google Scholar 

  62. Zandee, D.I. (1966) Metabolism in the Crayfish, Astacus astacus. IV. The Fatty Acid Composition and the Biosynthesis of the Fatty Acids, Arch. Int. Physiol. Biochim. 74, 614–626.

    PubMed  CAS  Google Scholar 

  63. Hongpattarakere, T., Seksun, N., and Suriya, A. (2003) Isolation and Screening of d-Amino Acid Amidase Producing Bacteria from Soil Samples, Songklanakarin J. Sci. Technol. (Thailand) 25, 255–265.

    CAS  Google Scholar 

  64. Tanaka, T., Yamada, K., Shimizu, A., and Ogawa, O. (2003) l-Amino Acid Manufacture with Transaminase-Producing Yeast and Bacteria, Japan Kokai Tokkyo Koho, 6 pp., Japanese Patent: JP 2003284582 A2 20031007. Application: JP 200294836 20020329.

  65. Buchanan, K., Burton, S.G., Dorrington, R.A., Matcher, G.F., and Skepu, Z. (2001) A Novel Pseudomonas putida Strain with High Levels of Hydantoin-Converting Activity, Producing l-Amino Acids, J. Mol. Catal., B Enzym. 11, 397–406.

    Article  CAS  Google Scholar 

  66. Stelkes-Ritter, U., Kula, M.-R., Wyzgol, K., Bommarius, A., Schwarm, M., and Drauz, K. (1995) Microorganisms Containing Peptide Amidase, Peptide Amidases Contained in Them and Their Use, PCT Int. Appl., 71 pp., German Patent: WO 9530740 A1 19951116. Application: WO 95-EP1689 19950429.

  67. Holbert, J.M. (1946) Identification of an Acid in the Root Bark of Viburnum prunifolium, J. Am. Pharm. Assoc. 35, 315–316.

    CAS  Google Scholar 

  68. Rontani, J.F., and Giusti, G. (1986) Study of the Biodegradation of Poly-branched Alkanes by a Marine Bacterial Community, Mar. Chem. 20, 197–205.

    Article  CAS  Google Scholar 

  69. Wong K.C., and Tan, G.L. (1994) Steam Volatile Constituents of the Aerial Parts of Paederia foetida L, Flavour Fragrance J. 9, 25–28.

    Article  CAS  Google Scholar 

  70. Totsuka, K., Shimizu, K., Konishi, M., and Yamamoto, S. (1992) Metabolism of S-1108, a New Oral Cephem Antibiotic, and Metabolic Profiles of Its Metabolites in Humans, Antimicrob. Agents Chemother. 36, 757–761.

    PubMed  CAS  Google Scholar 

  71. Brass, E.P. (2002) Pivalate-Generating Prodrugs and Carnitine Homeostasis in Man, Pharmacol. Rev. 54, 589–598.

    Article  PubMed  CAS  Google Scholar 

  72. Shigematsu, H., Shimoda, M., and Osajima, Y. (1994) Comparison of the Odor Concentrates of Black Tea, Nippon Shokuh in Kogyo Gakkaishi 41, 768–777.

    CAS  Google Scholar 

  73. Schepartz, A.I., and McDowell, P.E. (1961) Identification of Carbonyls in Cigar Smoke by Hydrazone Exchange Gas Chromatography, U.S. Department of Agriculture, West Point, PA, ARS 73-34, 8 pp. CAN 55:127233, AN 1961, 127233.

  74. Guillen, M.D., and Errecal de, M.C. (2002) Volatile Components of Raw and Smoked Black Bream (Brama raii) and Rainbow Trout (Oncorhynchus mykiss) Studied by Means of Solid Phase Microextraction and Gas Chromatography-Mass Spectrometry. J. Sci. Food Agric., 82, 945–952.

    Article  CAS  Google Scholar 

  75. Gong, F., and Wang, Y. (2004) Chemical Constituents of the Volatile Oil from Lysimachia foenum-graecum Hance, Zhiwu Ziyuan Yu Huanjing Xuebao 13, 59–61.

    CAS  Google Scholar 

  76. Chen, Z., Chen, N., Xue, D., Li, H., and Chen, Y. (1989) Chemical Constituents of the Volatile Oil of Fresh Flowers of Elaeagnus angustifolia L. Gaodeng Xuexiao Huaxue Xuebao 10, 804–808.

    Google Scholar 

  77. Barlow, P., and Marchbanks, R.M. (1985) The Effects of Inhibiting Choline Dehydrogenase on Choline Metabolism in Mice, Biochem. Pharmacol. 34, 3117–3122.

    Article  PubMed  CAS  Google Scholar 

  78. Hermes, H.F.M., Sonke, T., Peters, P.J.H., Van Balken, J.A.M., Kamphuis, J., Dijkhuizen, L., and Meijer, E.M. (1993) Purification and Characterization of an l-Aminopeptidase from Pseudomonas putida ATCC 12633, Appl. Environ. Microbiol. 59, 4330–4334.

    PubMed  CAS  Google Scholar 

  79. Takashima, Y., Kumagai, K., and Mitsuda, S. (1993) Conversion of Nitriles to Amides with Agrobacterium, 8 pp., European Patent: EP 568072 A2 19931103, Application: EP 93-106982 19930429.

  80. Morales, P., Fernandez-Garcia, E., and Nunez, M. (2005) Volatile Compounds Produced in Cheese by Pseudomonas Strains of Dairy Origin Belonging to Six Different Species, J. Agric. Food Chem. 53, 6835–6843.

    Article  PubMed  CAS  Google Scholar 

  81. Sin, S.N., and Chua, H. (2000) Degradation Pathway of Persistent Branched Fatty Acids in Natural Anaerobic Ecosystem, Chemosphere 41, 149–153.

    Article  PubMed  CAS  Google Scholar 

  82. Gregory, M.A., Gaisser, S., Petkovic, H., and Moss, S. (2004) Genetic Engineering of Streptomyces hygroscopicus and Other Microbes for Production of Polyketides and Other Natural Products, 216 pp., GB Patent: WO 2004007709 A2 20040122. Application: WO 2003-GB3230 20030716.

  83. Oprea, E., Radulescu, V., and Chiliment, S. (2004) Analysis of Volatile and Semivolatile Compounds of Paulownia tomentosa by Gas chromatography Coupled with Mass Spectrometry, Rev. Chim. (Bucharest) 55, 410–412.

    CAS  Google Scholar 

  84. Awad, N.E., Selim, M.A., Saleh, M.M., and Matloub, A.A. (2001) Biological Activity and Volatile Components of Corallina officinalis L., Bull. Nat. Res. Centre (Egypt) 26, 17–37.

    CAS  Google Scholar 

  85. Sagrero-Nieves, L., Waller, G.R., and Sgaramella, R.P. (1993) The Composition of the Essential Oil from Aristolochia asclepiadifolia Brandg. Root. Flavour Fragrance J. 8, 11–15.

    Article  CAS  Google Scholar 

  86. Bentley, E.W., and Rowe, M. (1956) Pival, an Anticoagulant Rodenticide, J. Hyg. (Lond.) 54, 20–27.

    CAS  Google Scholar 

  87. Kamm, G. (1967) Determination of Coumarin Derivatives, Arzneimittelforschung 17, 1202–1204.

    PubMed  CAS  Google Scholar 

  88. Vashkov, V.I., and Shnaider, E.V. (1962) Insecticidal Properties of Some Rodenticides, Zh. Khim. (USSR) 15, 155–159.

    Google Scholar 

  89. Phillips, M.A. (1963) Some Modern Rodenticides, Agric. Vet. Chem. 4, 133–134.

    CAS  Google Scholar 

  90. Kappel, F.H. (1989) Insecticidal and Rodenticidal Composition and Article, Brazil Pedido PI (Brazil), 19 pp., Brazilian Patent: BR 8704465 A 19890228.

  91. Tanigawa, I., and Inoue, K. (2001) Rodenticides Containing Cytochrome P-450 Derivatives and Blood Coagulation Inhibitors, Japan Kokai Tokkyo Koho, 5 pp., Japanese Patent: JP 2001288013 A2 20011016.

  92. Yoshizako, F., Nishimura, A., and Chubachi, M. (1994) Identification of Algal Transformation Products from Alicyclic Ketones, J. Ferment. Bioeng. 77, 144–147.

    Article  CAS  Google Scholar 

  93. Klein, D., Braekman, J.-C., Daloze, D., Hoffmann, L., and Demoulin, V. (1996) Laingolide, a Novel 15-Membered Macrolide from Lyngbya bouillonii (Cyanophyceae). Tetrahedron Lett. 37, 7519–7520.

    Article  CAS  Google Scholar 

  94. Klein, D., Braekman, J.C., Daloze, D., Hoffmann, L., Castillo, G., and Demoulin, V. (1999) Madangolide and Laingolide A, Two Novel Macrolides from Lyngbya bouillonii (Cyanobacteria). J. Nat. Prod. 62, 934–936.

    Article  PubMed  CAS  Google Scholar 

  95. Gallimore, W.A., Galario, D.L., Lacy, C., Zhu, Y., and Scheuer, P.J. (2000) Two Complex Proline Esters from the Sea Hare Stylocheilus longicauda, J. Nat. Prod. 63, 1022–1026.

    Article  PubMed  CAS  Google Scholar 

  96. Nakanishi, K. (1967) Ginkgolides. Pure Appl. Chem. 14, 89–113.

    PubMed  CAS  Google Scholar 

  97. Nakanishi, K. (2005) Terpene Trilactones from Gingko biloba: From Ancient Times to the 21 st Century, Bioorg. Med. Chem. 13, 4987–5000.

    Article  PubMed  CAS  Google Scholar 

  98. Van Beek, T.A. (2005) Ginkgolides and Bilobalide: Their Physical, Chromatographic and Spectroscopic Properties, Bioorg. Med. Chem. 13, 5001–5012.

    Article  PubMed  CAS  Google Scholar 

  99. Sviridov, A.F. (1991) Gingkolides and Bilobalide: Structure, Pharmacology, and Synthesis, Bioorg. Khim. (USSR) 17, 1301–1312.

    CAS  Google Scholar 

  100. Michel, P.F. (1986) The Doyen of Trees: The Ginkgo biloba, Presse Med. (Paris), 15, 1450–1454.

    CAS  Google Scholar 

  101. Z'Brun, A. (1995) Ginkgo—Myth and Reality, Rev. Suisse Med./Prax, 84, 1–6.

    Google Scholar 

  102. Yang, L.Q., Wu, X.Y., Wu, J.B., and Chen, J. (2004) Progress in Research on Constituents and Pharmacological Activities of Sarcotestas of Ginkgo biloba, Zhongguo Zhong Yao Za Zhi 29, 111–115.

    PubMed  CAS  Google Scholar 

  103. Negro Alvarez, J.M., Miralles Lopez, J.C., Ortiz Martinez, J.L., Abellan Aleman, A., and Rubio del Barrio, R. (1997) Plate let-Activating Factor Antagonists, Allergol. Immunopathol. (Madr.) 25, 249–258.

    CAS  Google Scholar 

  104. Christen, Y., and Maixent, J.M. (2002) What Is Ginkgo biloba Extract EGb 761? An Overview—From Molecular Biology to Clinical Medicine. Cell Mol. Biol. (Noisy-le-Grand), 48, 601–611.

    CAS  Google Scholar 

  105. Nagle, D.G., Paul, V.J., and Roberts, M.A. (1996) Ypaoamide, a New Broadly Acting Feeding Deterrent from the Marine Cyanobacterium Lyngbya majuscula, Tetrahedron Lett. 37 6263–6266.

    Article  CAS  Google Scholar 

  106. Nagle, D.G., and Paul, V.J. (1998) Chemical Defense of a Marine Cyanobacterial Bloom, J. Exp. Mar. Biol. Ecol. 225, 29–38.

    Article  CAS  Google Scholar 

  107. Nagle, D.G., and Paul, V.J. (1999) Production of Secondary Metabolites by Filamentous Tropical Marine Cyanobacteria: Ecological Functions of the Compounds. J. Phycol. 35, 1412–1421.

    Article  CAS  Google Scholar 

  108. Irie, K., Funaki, A., Koshimizu, K., Hayashi, H., and Arai, M. (1989) Structure of Blastmycetin E, a New Teleocidin-Related Compound, from Streptoverticillium blastmyceticum, Tetrahedron Lett., 30, 2113–2116.

    Article  CAS  Google Scholar 

  109. Irie, K., Kajiyama, S., Funaki, A., Koshimizu, K., Hayashi, H., and Arai, M. (1989) Studies on the Biosynthesis of Indole Alkaloid Tumor Promoter Teleocidin, Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 31, 308–315.

    Google Scholar 

  110. Kawai, T., Ichinose, T., Endo, Y., Shudo, K., and Itai, A. (1992) Active Conformation of a Tumor Promoter, Teleocidin. A Molecular Dynamics Study. J. Med. Chem. 35, 2248–2253.

    Article  PubMed  CAS  Google Scholar 

  111. Irie, K., Kajiyama, S., Funaki, A., Koshimizu, K., Hayashi, H., and Arai, M. (1990) Biosynthesis of Indole Alkaloid Tumor Promoters Teleocidins. I. Possible Biosynthetic Pathway of the Monoterpenoid Moieties of Teleocidins. Tetrahedron 46, 2773–2788.

    Article  CAS  Google Scholar 

  112. Nakamura, S., Chikaike, T., Karasawa, K., Tanaka, N., Yonehara, H., and Umezawa, H. (1965) Isolation and Characterization of Bottromycins A and B, J. Antibiot. (Tokyo) 18, 47–52.

    CAS  Google Scholar 

  113. Nakamura, S., Tanaka, N., and Umezawa, H. (1966) Bottromycins A1 and A2 and Their Structures, J. Antibiot. (Tokyo) 19, 10–12.

    CAS  Google Scholar 

  114. Hata, F., Matsumae, A., Abe, K., Sano, Y., Otani, M., and Omura, S. (1972) Fermentative Preparation of Bottromycin, Japan Tokkyo Koho, 8 pp., Japanese Patent: JP 47010036 19720325 Showa. Application: JP 68-20709 19680330.

  115. Mizuno, K., Muto, N., Kamata, S., and Asano, K. (1974) Antibiotic, Bottromycin, Japan Kokai Tokkyo Koho, 7 pp., Japanese Patent: JP 49116297 19741106 Showa. Application: JP 73-28677 19730312.

  116. Orjala, J., Nagle, D.G., Hsu, V., and Gerwick, W.H. (1995) Antillatoxin: An Ex ceptionally Ichthyotoxic Cyclic Lipopeptide from the Tropical Cyanobacterium Lyngbya majuscula, J. Am. Chem. Soc. 117, 8281–8282.

    Article  CAS  Google Scholar 

  117. Berman, F.W., Gerwick, W.H., and Murray, T.F. (1999) Antillatoxin and Kalkitoxin, Ichthyotoxins from the Tropical Cyanobacterium Lyngbya majuscula Induce Distinct Temporal Patterns of NMDA Receptor-Mediated Neurotoxicity, Toxicon 37, 1647–1648.

    Article  Google Scholar 

  118. Nogle, L.M., Okino, T., and Gerwick, W.H. (2001) Antillatoxin B, a Neurotoxic Lipopeptide from the Marine Cyanobacterium Lyngbya majuscula, J. Nat. Prod. 64, 983–985.

    Article  PubMed  CAS  Google Scholar 

  119. Li, W.I., Berman, F.W., Okino, T., Yokokawa, F., Shioiri, T., Gerwick, W.H., and Murray, T.F. (2001) Antillatoxin Is a Marine Cyanobacterial Toxin That Potently Activates Voltage-Gated Sodium Channels, Proc. Natl. Acad. Sci. USA 98, 7599–7604.

    Article  PubMed  CAS  Google Scholar 

  120. Talpir, R., Benayahu, Y., Kashman, Y., Pannell, L., and Schleyer, M. (1994) Hemiasterlin and Geodiamolide TA: Two New Cytotoxic Peptides from the Marine Sponge Hemiasterella minor (Kirkpatrick), Tetrahedron Lett. 35, 4453–4456.

    Article  CAS  Google Scholar 

  121. Andersen, R., Coleman, J., De Silva, D., Kong, F., Piers, E., Wallace, D., Roberge, M., and Allen, T. (1996) Biologically Active Peptides and Compositions and Their Use. PCT Int. Appl., 65 pp., WO 9633211 A1 19961024. Application: WO 96-GB942 19960422.

  122. Coleman, J.E., De Silva, E., Kong, F., Andersen, R.J., and Allen, T.M. (1995) Cytotoxic Peptides from the Marine Sponge Cymbastela sp., Tetrahedron 51, 10653–10662.

    Article  CAS  Google Scholar 

  123. Chevallier, C., Richardson, A.D., Edler, M.C., Hamel, E., Harper, M.K., and Ireland, C.M. (2003) A New Cytotoxic and Tubulin-Interactive Milnamide Derivative from a Marine Sponge Cymbastela sp., Org. Lett. 5, 3737–3739.

    Article  PubMed  CAS  Google Scholar 

  124. Sonnenschein, R.N., Farias, J.J., Tenney, K., Mooberry, S.L., Lobkovsky, E., Clardy, J., and Crews, P. (2004) A Further Study of the Cytotoxic Constituents of a Milnamide-Producing Sponge. Org. Lett. 6, 779–782.

    Article  PubMed  CAS  Google Scholar 

  125. Gulavita, N.K., Gunasekera, S.P., Pomponi, S.A., and Robinson, E.V. (1992) Polydiscamide A: A New Bioactive Depsipeptide from the Marine Sponge Discodermia sp., J. Org. Chem. 57, 1767–1772.

    Article  CAS  Google Scholar 

  126. Rashid, M.A., Gustafson, K.R., Cartner, L.K., Shigematsu, N., Pannell, L.K., and Boyd, M.R. (2001) Microspinosamide, a New HIV-Inhibitory Cyclic Depsipeptide from the Marine Sponge Sidonops microspinosa, J. Nat. Prod. 64, 117–121.

    Article  PubMed  CAS  Google Scholar 

  127. Hamada, T., Matsunaga, S., Yano, G., and Fusetani, N. (2005) Polytheonamides A and B, Highly Cytotoxic, Linear Polypeptides with Unprecedented Structural Features, from the Marine Sponge, Theonella swinhoei, J. Am. Chem. Soc. 127, 110–118.

    Article  PubMed  CAS  Google Scholar 

  128. Li, H., Matsunaga, S., and Fusetani, N. (1995) Halicylindramides A-C, Antifungal and Cytotoxic Depsipeptides from the Marine Sponge Halichondria cylindrata, J. Med. Chem. 38, 338–343.

    Article  PubMed  CAS  Google Scholar 

  129. Luesch, H., Yoshida, W.Y., Moore, R.E., and Paul, V.J. (2002) New Apratoxins of Marine Cyanobacterial Origin from Guam and Palau, Bioorg. Med. Chem. 10, 1973–1978.

    Article  PubMed  CAS  Google Scholar 

  130. Matsunaga, S., Fusetani, N., and Konosu, S. (1984) Bioactive Marine Metabolites VI. Structure Elucidation of Discodermin A, an Antimicrobial Peptide from the Marine Sponge Discodermia kiiensis, Tetrahedron Lett. 25, 5165–5168.

    Article  CAS  Google Scholar 

  131. Ryu, G., Matsunaga, S., and Fusetani, N. (1994) Bioactive Marine Metabolites. 64. Discodermin E, a Cytotoxic and Antimicrobial Tetradecapeptide, from the Marine Sponge Discodermia kiiensis, Tetrahedron Lett. 35, 8251–8254.

    Article  CAS  Google Scholar 

  132. Ryu, G., Matsunaga, S., and Fusetani, N. (1994) Discodermins F-H, Cytotoxic and Antimicrobial Tetradecapeptides from the Marine Sponge Discodermia kiiensis: Structure Revision of Discodermins A-D. Tetrahedron 50, 13409–13416.

    Article  CAS  Google Scholar 

  133. Sato, K., Horibe, K., Amano, K., Mitusi-Saito, M., Hori, M., Matsunaga, S., Fusetani, N., Ozaki, H., and Karaki, H. (2001) Membrane Permeabilization Induced by Discodermin A, a Novel Marine Bioactive Peptide, Toxicon 39, 259–264.

    Article  PubMed  CAS  Google Scholar 

  134. Schun, Y., Cordell, G.A., Cox, P.J., and Howie, R.A. (1986) Studies on Thymelaeaceae, Part 4, Wallenone, a C32 Triterpenoid from the Leaves of Gyrinops walla, Phytochemistry 25, 753–755.

    Article  CAS  Google Scholar 

  135. Rios, M.Y., and Aguilar-Guadarrama, A.B. (2002) Terpenes and a New Bishomotriterpene from Esenbeckia stephani, Biochem. Syst. Ecol. 30, 1006–1008.

    Article  CAS  Google Scholar 

  136. Hui, W.H., Luk, K., Arthur, H.R., and Loo, S.N. (1971) Structure of Three C32 Triterpenoids from Neolitsea pulchella. J. Chem. Soc. 16C, 2826–2829.

    Google Scholar 

  137. Chan, W.-S., and Hui, W.-H. (1973) Further C32 Triterpenoids from Neolitsea pulchella, J. Chem. Soc., Perkin Trans. 1 5, 490–492.

    Article  Google Scholar 

  138. Hui, W.-H., and Li, M.-M. (1997) Six New Triterpenoids and Other Triterpenoids and Steroids from Three Quercus Species of Hong Kong. J. Chem. Soc., Perkin Trans. 1 8, 897–904.

    Google Scholar 

  139. Kim, S.K., Akihisa, T., Tamura, T., Matsumoto, T., Yokota, T., and Takahashi, N. (1988) Brassinosteroids in Phaseolus vulgaris. Part IV. 24-Methylene-24-methyl-cholesterol in Phaseolus vulgaris Seed: Structural Relation to Brassinosteroids. Phytochemistry 27, 629–631.

    Article  CAS  Google Scholar 

  140. Kim, S.K., Yokota, T., and Takahashi, N. (1987) Brassinosteroids in Phaseolus vulgaris, Part III. 25-Methyl-dolichosterone, a New Brassinosteroid with a Tertiary Butyl Group from Immature Seed of Phaseolus vulgaris, Agric. Biol. Chem. 51, 2303–2305.

    CAS  Google Scholar 

  141. Takahashi, N., Yokota, T., and Kin, S. (1988) Isolation of Brassinosteroids from Bean Seeds, as Plant Growth Regulators. Japan Kokai Tokkyo Koho, 5 pp., Japanese Patent: JP 63255297 A2 19881021 Showa, Application: JP 87-89752 19870414.

  142. Yokota, T., Watanabe, S., Ogino, Y., Yamaguchi, I., and Takahashi, N. (1990) Radioimmunoassay for Brassinosteroids and Its Use for Comparative Analysis of Brassinosteroids in Stems and Seeds of Phaseolus vulgaris, J. Plant Growth Regul, 9, 151–159.

    Article  CAS  Google Scholar 

  143. Mori, K., and Takeuchi, T. (1988) Brassinolide and Its Analogues. VIII. Synthesis of 25-Methyldolichosterone, 25-Methyl-2,3-diepidolichosterone, 25-Methylcastasterone and 25-Methylbrassinolide, Liebigs Ann. Chem. 8, 815–818.

    Google Scholar 

  144. Bergmann, W., and Feeney, R.J. (1949) Marine Products. XXIII. Sterols from Sponges of the Family Haliclonidae, J. Org. Chem. 14, 1078–1084.

    Article  CAS  Google Scholar 

  145. Tsuda, K., and Sakai, K. (1960) Steroid Studies. XX. Sterols from Green Ocean Algae, Chem. Pharm. Bull. (Tokyo) 8, 554–558.

    CAS  Google Scholar 

  146. Bergmann, W. (1953) The Plant Sterols, Annu. Rev. Plant Physiol. 4, 383–425.

    Article  Google Scholar 

  147. Patterson, G.W. (1971) Distribution of Sterols in Algae, Lipids 6, 120–127.

    Article  CAS  Google Scholar 

  148. Stonik, V.A. (2001) Marine Polar Steroids, Russ. Chem. Rev. 70, 673–715.

    Article  CAS  Google Scholar 

  149. Bergmann, W., Feeney, R.J., and Swift, A.N. (1951) Marine Products. XXXI. Palysterol and Other Lipide Compounds of Sea Anemones, J. Org. Chem. 16, 1337–1344.

    Article  CAS  Google Scholar 

  150. Li, X., and Djerassi, C. (1983) Minor and Trace Sterols in Marine Invertebrates 40. Structure and Synthesis of Axinyssasterol, 25-Methylfucosterol and 24-Ethyl-24-methylcholesterol—Novel Sponge Sterols with Highly Branched Side Chains, Tetrahedron Lett, 24, 665–668.

    Article  CAS  Google Scholar 

  151. Makar'eva, T.N., Isakov, V.V., and Stonik, V.A. (1990) Steroidal Compounds from Marine Sponges. XI. Steroids from the Australian Sponge Trachyopsis sp., Khim. Prir. Soedin (USSR) 2, 215–218.

    Google Scholar 

  152. Shubina, L.K., Makarieva, T.N., Kalinovskii, A.I., and Stonik, V.A. (1985) Steroid Compounds of Marine Sponges. IV. Novel Sterols with Unusual Side Chains from the Sponge Halichondria sp., Khim. Prir. Soedin. (USSR) 2, 232–239.

    Google Scholar 

  153. Shubina, L.K., Makar'eva, T.N., and Stonik, V.A. (1984) Steroidal Compounds of Marine Sponges. III. 24-Ethyl-25-methylcholesta-5,22-dien-3β-ol—A Novel Marine Sterol from the Sponge Halichondria sp., Khim. Prir. Soedin. (USSR) 4, 464–467.

    Google Scholar 

  154. Shubina, L.K. Makar'eva, T.N., and Stonik, V.A (1985) Steroidal Compounds of Marine Sponges. VI. Sterols and Their Derivatives from Trachyopsis aplysinoides. Khim. Prir. Soedin. (USSR) 5, 715–716.

    Google Scholar 

  155. Fusetani, N., Matsunaga, S., and Konosu, S. (1981) Bioactive Marine Metabolites. II. Halistanol Sulfate, an Antimicrobial Novel Steroid Sulfate from the Marine Sponge Halichondria cf. moorei Bergquist, Tetrahedron Lett. 22, 1985–1988

    Article  CAS  Google Scholar 

  156. Makar'eva, T.N., Shubina, L.K., Kalinovskii, A.I., Stonik, V.A., and Elyakov, G.B. (1983) Steroids in Porifera. II. Steroid Derivatives from Two Sponges of the Family Halichondriidae, Sokotrasterol Sulfate, a Marine Steroid with a New Pattern of Side Chain Alkylation. Steroids 42, 267–281.

    Article  Google Scholar 

  157. Zvyagintseva, T.N., Makar'eva, T.N., Stonik, V.A., and Elyakova, L.A. (1986) Sulfated Steroids of Sponges of the Family Halichondriidae, Natural Inhibitors of endo-1»3-β-d-Glucanase Khim. Prir. Soedin. 1, 71–77.

    Google Scholar 

  158. Bifulco, G., Bruno, I., Minale, L., and Riccio, R. (1994) Novel HIV-Inhibitory Halistanol Sulfates f-h from a Marine Sponge, Pseudoaxinissa digitata. J. Nat. Prod. 57, 164–167.

    Article  PubMed  CAS  Google Scholar 

  159. Patil, A.D., Freyer, A.J., Breen, A., Carte, B., and Johnson, R.K. (1996) Halistanol Disulfate B, a Novel Sulfated Sterol from the Sponge Pachastrella sp: Inhibitor of Endothelin Converting Enzyme. J. Nat. Prod. 59, 606–608.

    Article  PubMed  CAS  Google Scholar 

  160. Moni, R.W., Parsons, P.G., Quinn, R.J., and Willis, R.J. (1992) Critical Micelle Concentration and Hemolytic Activity—A Correlation Suggested by the Marine, Sterol, Halistanol Trisulfate, Biochem. Biophys. Res. Commun. 182, 115–120.

    Article  PubMed  CAS  Google Scholar 

  161. Kanazawa, S., Fusetani, N., and Matsunaga, S. (1992) Bioactive Marine Metabolites. Part 42. Halistanol Sulfates A-E, New Steroid Sulfates, from a Marine Sponge, Epipolasis sp., Tetrahedron 48, 5467–5472.

    Article  CAS  Google Scholar 

  162. Yang, S.-W., Buivich, A., Chan, T.-M., Smith, M., Lachowicz, J., Pomponi, S.A., Wright, A.E., Mierzwa, R., Patel, M., Gullo, V., et al. (2003) A New Sterol Sulfate, Sch 572423, from a Marine Sponge, Topsentia sp., Bioorg. Med. Chem. Lett. 13, 1791–1794.

    Article  PubMed  CAS  Google Scholar 

  163. Tsukamoto, S., Kato, H., Hirota, H., and Fusetani, N. (1997) Isolation of an Unusual 2-Aminoimidazolium Salt of Steroid Trisulfate from a Marine Sponge Topsentia sp., Fish. Sci. 63, 310–312.

    CAS  Google Scholar 

  164. D'Auria, M.V., Gomez-Paloma, L., Minale, L., Riccio, R., and Debitus, C. (1992) Structure Charactreization by Two-Dimensional NMR Spectroscopy, of Two Marine Triterpene Oligoglycosides from a Pacific Sponge of the Genus Erylus, Tetrahedron 48, 491–498.

    Article  Google Scholar 

  165. Gulavita, N.K., Wright, A.E., Kelly-Borges, M., Longley, R.E., Yarwood, D., and Sills, M.A. (1994) Eryloside E from an Atlantic Sponge Erylus goffrilleri, Tetrahedron Lett. 35, 4299–4302.

    Article  CAS  Google Scholar 

  166. Shin, J., Lee, H.-S., Woo, L., Rho, J.-R., Seo, Y., Cho, K.W., and Sim, C.J. (2001) New Triterpenoid Saponins from the Sponge Erylus nobilis, J. Nat. Prod. 64, 767–771.

    Article  PubMed  CAS  Google Scholar 

  167. Pettit, G.R., Herald, C.L., Doubek, D.L., Herald, D.L., Arnold, E., and Clardy, J. (1982) Isolation and Structure of Bryostatin 1, J. Am. Chem. Soc. 104, 6846–6848.

    Article  CAS  Google Scholar 

  168. Mutter, R., and Wills, M. (2000) Chemistry and Clinical Biology of the Bryostatins, Bioorg. Med. Chem. 8, 1841–1860.

    Article  PubMed  CAS  Google Scholar 

  169. Hale, K.L., Hummersone, M.G., Manaviazar, S., and Frigerio, M. (2002) The Chemistry and Biology of the Bryostatin Antitumour Macrolides, Nat. Prod. Rep. 19, 413–453.

    Article  PubMed  CAS  Google Scholar 

  170. Lopanik, N., Gustafson, K.R., and Lindquist, N. (2004) Structure of Bryostatin 20: A Symbiont-Produced Chemical Defense for Larvae of the Host Bryozoan, Bugula neritina, J. Nat. Prod. 67, 1412–1414.

    Article  PubMed  CAS  Google Scholar 

  171. MacLeod, G., and Ames, J.M. (1991) Gas Chromatography—Mass Spectrometry of the Volatile Components of Cooked Scorzonera, Phytochemistry 30, 883–888.

    Article  CAS  Google Scholar 

  172. Zeng, H., Jiang, L., and Zhang, Y. (2003) Chemical Constituents of Volatile Oil from Houttuynia cordata Thunb., Zhiwu Ziyuan Yu Huanjing Xuebao 12, 50–52.

    CAS  Google Scholar 

  173. Georgieva, E., Handjieva, N., Popov, S., and Evstatieva, L. (2005) Comparative Analysis of the Volatiles from Flowers and Leaves of Three Gentiana Species, Biochem. Syst. Ecol. 33, 938–947.

    Article  CAS  Google Scholar 

  174. Shahidi, F., Aishima, T., Abou-Gharbia, H.A., Youssef, M., Shehata, A., and Adel, Y. (1997) Effect of Processing on Flavor Precursor Amino Acids and Volatiles of Sesame Paste (tehina). J. Am. Oil Chem. Soc. 74, 667–678.

    CAS  Google Scholar 

  175. Shigematsu, H., Shimoda, M., and Osajima, Y. (1994) Comparison of the Odor Concentrates of Black Tea, Nippon Shokuhin Kogyo Gakkaishi 41, 768–777.

    CAS  Google Scholar 

  176. Enriquez, M., and Otero, M.A. (1997) Identification of Components of the Organic Fraction of Cuban Sugarcane Molasses, Rev. sobre los Derivados de la Cana de Azucar (Cuba), 31, 64–70.

    CAS  Google Scholar 

  177. El Alfy, T.S., Tadros, S.H., Ibrahim, T.A., and Sleem, A.A. (2004) Volatile Constituents, Nutritive Value and Bioactivity of the Pericarp of Averrhoa carambola L. Fruits Grown in Egypt, Bull. Fac. Pharm. (Cairo University), 42, 205–224.

    Google Scholar 

  178. Buchbauer, G., Jirovetz, L., Wasicky, M., and Nikiforov, A. (1993) Volatile Constituents of the Headspace and Essential Oil of Plectranthus coleoides Marginatus (Labiatae), J. Essent. Oil Res. 5, 311–313.

    CAS  Google Scholar 

  179. Sun, Y., Zhang, H., Jiang, W., and Wang, X. (1987) Analysis of Volatile Constituents of Ginseng. (IV). Volatile Constituents from the Roots of Ginseng Grown in Different Areas of Jilin Province, Jilin Daxue Ziran Kexue Xuebao 1, 107–112.

    Google Scholar 

  180. Jordan, E.D., Hsieh, T.C.Y., and Fischer, N.H. (1993) Volatiles from Litter and Soil Associated with Ceratiola ericoides, Phytochemistry 33, 299–302.

    Article  CAS  Google Scholar 

  181. Bulatovic, V.M., Menkovic, N.R., Vajs, V.E., Milosavljevic, S.M., and Djokovic, D.D. (1998) Essential Oil of Anthemis montana, J. Essent. Oil Res. 10, 223–226.

    CAS  Google Scholar 

  182. Gomez, E., Ledbetter, C.A., and Hartsell, P.L. (1993) Volatile Compounds in Apricot, Plum, and Their Interspecific Hybrids, J. Agric. Food Chem. 41, 1669–1676.

    Article  CAS  Google Scholar 

  183. Tirillini, B., Verdelli, G., Paolocci, F., Ciccioli, P., and Frattoni, M. (2000) The Volatile Organic Compounds from the Mycelium of Tuber borchii Vitt, Phytochemistry 55, 983–985.

    Article  PubMed  CAS  Google Scholar 

  184. Spanier, A.M., Flores, M., James, C., Lasater, J., Lloyd, S., and Miller, J.A. (1998) Fresh-cut Pineapple (Ananas sp.) Flavor. Effect of Storage, Dev. Food Sci. 40, 331–343.

    Article  CAS  Google Scholar 

  185. Chung, H.Y., and Cadwallader, K.R. (1993) Volatile Components in Blue Crab (Callinectes sapidus) Meat and Processing Byproduct, J. Food Sci. 58, 1203–1207.

    Article  CAS  Google Scholar 

  186. Tanchotikul, U., and Hsieh, T.C.Y. (1989) Volatile Flavor Components in Crayfish Waste, J. Food Sci. 54, 1515–1520.

    Article  CAS  Google Scholar 

  187. Insausti, K., Goni, V., Petri, E., Gorraiz, C., and Beriain, M.J. (2005) Effect of Weight at Slaughter on the Volatile Compounds of Cooked Beef from Spanish Cattle Breeds, Meat Sci. 70, 83–90.

    Article  CAS  Google Scholar 

  188. Insausti, K., Beriain, M.J., Gorraiz, C., and Purroy, A. (2002) Volatile Compounds of Raw Beef from 5 Local Spanish Cattle Breeds Stored Under Modified Atmosphere. J. Food Sci. 67, 1580–1589.

    Article  CAS  Google Scholar 

  189. Procida, G., Conte, L., Comi, G., and Cantoni, C. (2003) Characterization of the Volatile Fraction of Colonnata Bacon, Ind. Aliment. 42, 268–273.

    CAS  Google Scholar 

  190. Procida, G., Conte, L., Comi, G. (2001) Characterization of Lardo di Colonnata, Laboratorio 2000, 15, 14–18.

    CAS  Google Scholar 

  191. Bossett, J.O., and Gauch, R. (1993) Comparison of the Volatile Flavor Compounds of Six European ‘AOC’ Cheeses by Using a New Dynamic Headspace GC-MS Method, Int. Dairy J. 3, 359–377.

    Article  CAS  Google Scholar 

  192. Yang, W.T., And Min, D.B. (1994) Dynamic Headspace Analyses of Volatile Compounds of Cheddar and Swiss Cheeses During Ripening, J. Food Sci. 59, 1309–1312.

    Article  CAS  Google Scholar 

  193. Barbieri, G., Bolzoni, L., Careri, M., Mangia, A., Parolari, G., Spagnoli, S., and Virgili, R. (1994) Study of the Volatile Fraction of Parmesan Cheese, J. Agric. Food Chem. 42, 1170–1176.

    Article  CAS  Google Scholar 

  194. Estevez, M., Morcuende, D., Ventanas, S., and Cava, R. (2003) Analysis of Volatiles in Meat from Iberian Pigs and Lean Pigs After Refrigeration and Cooking by Using SPME-GC-MS, J. Agric. Food Chem. 51, 3429–3435.

    Article  PubMed  CAS  Google Scholar 

  195. Taylor, D.L., and Larick, D.K. (1995) Investigations into the Effect of Supercritical Carbon Dioxide Extraction on the Fatty Acid and Volatile Profiles of Cooked Chicken, J. Agric. Food Chem. 43, 2369–2374.

    Article  CAS  Google Scholar 

  196. Taylor, D.L., and Larick, D.K. (1995) Volatile Content and Sensory Attributes of Supercritical Carbon Dioxide Extracts of Cooked Chicken Fat, J. Food Sci. 60, 1197–1204.

    Article  CAS  Google Scholar 

  197. Oruna-Concha, M.J., Bakker, J., and Ames, J.M. (2002) Comparison of the Volatile Components of Eight Cultivars of Potato After Microwave Baking, Lebensm. Wiss. Technol. 35, 80–86.

    Article  CAS  Google Scholar 

  198. Hatcher, H.J., Barrett, K.B., Taghizadeh, K., Quigley, D.R., And Meuzelaar, H.L.C. (1989) A Comparison Of Uinta Basin, Utah Crude Oil and Biodegradable Products Preprints of Papers—American Chemical Society, Division of Fuel Chemistry 34, 1137–1148.

    CAS  Google Scholar 

  199. Kenig, F., Sinninghe Damster, J.S., Dalen, A.C.K., Rijpstra, A.Y., Huc, A.Y., and De Leeuw, J.W. (1995) Occurrence and Origin of Monomethylalkanes, Dimethylalkanes, and Trimethylalkanes in Modern and Holocene Cyanobacterial Mats from Abu-Dhabi, United-Arab-Emirates, Geochim. Cosmochim. Acta, 59, 2999–3015.

    Article  CAS  Google Scholar 

  200. Adam, P. (1991) Nouvelles structures organosoufrees d'interet geochimique: Aspects moleculaires et macro-moleculaires, Ph.D. Thesis, Université Louis Pasteur, Strasbourg.

    Google Scholar 

  201. Simons, D.J.H., Kenig, F., and Schroëder-Adams, C.J. (2003) Organic Geochemical Study of Cenomanian-Turonian Sediments from the Western Interior Seaway, Canada, Org. Geochem., 34, 1177–1198.

    Article  CAS  Google Scholar 

  202. Kenig, F., Simons, D.J.H., Crich, D., Cowen, J.P., Ventura, G.T., and Rehbein-Khalily, T. (2005) Structure and Distribution of Branched Aliphatic Alkanes with Quaternary Carbon Atoms in Cenomanian and Turonian Black Shales of Pasquia Hills (Saskatchewan, Canada), Org. Geochem., 36, 117–138.

    Article  CAS  Google Scholar 

  203. Simoneit, B.R.T., Lein, A.Y., Peresypkin, V.I., and Osipov, G.A. (2004) Composition and Origin of Hydrothermal Petroleum and Associated Lipids in the Sulfide Deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N), Geochim. Cosmochim. Acta 68, 2275–2294.

    Article  CAS  Google Scholar 

  204. Rolland, Y. (2004) Natural Plant Antioxidants, Lipides (Gras) 11, 419–424.

    CAS  Google Scholar 

  205. Larson, R.A. (1988) The Antioxidants of Higher Plants, Phytochemistry 27, 969–978.

    Article  CAS  Google Scholar 

  206. Hui, R., Hou, D., and Li, T. (2004) Extraction and Analysis on Volatile Constituents of the Fruit in Zizyphus jujuba Mill, Fenxi Huaxue 32, 325–328.

    CAS  Google Scholar 

  207. Hou, D., Hui, R., Yang, M., Guo, H., and Chen, B. (2003) Analysis of Chemical Constituents from Dry Flowers and Fresh Flowers of Aloe vera, Shipin Kexue (Beijing, China), 24, 126–128.

    CAS  Google Scholar 

  208. Moussa, M.Y. (2003) Volatile Constituents of the Red Alga: Hypnea musciformis (Wulfen) lamouroux, Green Alga: Enteromorpha compressa (L.) Nees and Their Antimicrobial Activities, Bull. Fac. Pharm. (Cairo University) 41, 139–144.

    CAS  Google Scholar 

  209. Vallat, A., and Dorn, S. (2005) Changes in Volatile Emissions from Apple Trees and Associated Response of Adult Female Codling Moths over the Fruit-Growing Season, J. Agric. Food Chem. 53, 4083–4090.

    Article  PubMed  CAS  Google Scholar 

  210. Alipieva, K., Evstatieva, L., Handjieva, N., and Popov, S. (2003) Comparative Analysis of the Composition of Flower Volatiles from Lamium L. Species and Lamiastrum galeobdolon Heist. ex Fabr, Zeit. Naturforsch. 58C, 779–782.

    Google Scholar 

  211. Fu, F., Zhang, Z., and Shi, Y. (1988) The Chemical Constituents of Essential Oil from Fissistigma shangtzeense, Yunnan Zhi Wu Yan Jiu 10, 105–108.

    CAS  Google Scholar 

  212. Wang, M., Jing, Z., Chen, S., Zhang, Z. and Shen, Z. (1991) Study on the Chemical Constituents of the Essential Oil of the Flower of Robinia pseudoacacia L, Sepu 9, 182–184.

    CAS  Google Scholar 

  213. Erickson, B.J., Young, A.M., Strand, M.A., and Erickson, E.H., Jr. (1987) Pollination Biology of Theobroma and Herrania (Sterculiaceae). II. Analyses of Floral Oils, Insect Sc. Its Appl. 8, 301–310.

    CAS  Google Scholar 

  214. Sunesson, A.-L., Nilsson, C.-A., Andersson, B., and Blomquist, G. (1996) Volatile Metabolites Produced by Two Fungal Species Cultivated on Building Materials, Ann. Occup. Hyg. 40, 397–410.

    PubMed  CAS  Google Scholar 

  215. Liu, X., Zhang, C., Yin, W., Liu, Z. and Lu, C. (2001) Study on Chemical Constituents of Essential Oil of Acanthopanax gracilistylus, Zhongcaoyao 32, 1074–1075.

    CAS  Google Scholar 

  216. Liu, X.Q., Chang, S.Y., Park, S.Y., Nohara, T., and Yook, C.S. (2002) Studies on the Constituents of the Stem Barks of Acanthopanax gracilistylus W.W. Smith, Nat. Prod. Sci. 8, 23–25.

    CAS  Google Scholar 

  217. Yang, X., Josephson, D., Peppet, J., Eilerman, R., Grab, W., and Gassenmeier, K. (2001) Headspace Aroma of “Wild Onion” Trees, Special Publication—Royal Society of Chemistry 274, 266–273.

    CAS  Google Scholar 

  218. Umano, K., Nakahara, K., Shoji, A., and Shibamoto, T. (1999) Aroma Chemicals Isolated and Identified from Leaves of Aloe arborescens Mill var. natalensis Berger. J. Agric. Food Chem. 47, 3702–3705.

    Article  PubMed  CAS  Google Scholar 

  219. Rao, G., Yu, X., and Sun, H. (1991) Chemical Constituents of “Lang-Du Dang-Gui” (Angelica sp.). Yunnan Zhi Wu Yan Jiu 13, 85–88.

    Google Scholar 

  220. Vallat, A., Gu, H., and Dorn, S. (2005) How Rainfall, Relative Humidity and Temperature Influence Volatile Emissions from Apple Trees in situ, Phytochemistry 66, 1540–1550.

    Article  PubMed  CAS  Google Scholar 

  221. Zhang, Y., Tao, L., and Huang, J. (2003) Comparison of Components of Essential Oils from Herba Artemisiae Scopariae Obtained by Supercritical Fluid Extraction and Steam Distillation, Fenxi Ceshi Xuebao 22, 84–86.

    Google Scholar 

  222. Choi, S.U., Kim, K.H., Kim, N.Y., Choi, E.J., Lee, C.O., Son, K.H., Kim, S.U., Bok, S.H., and Kim, Y.K. (1996) Cytotoxicity of a Novel Biphenotic Compound. Bis(2-hydroxy-3-tert-butyl-5-methlphenyl)methane Against Human Tumor Cells in vitro. Arch. Pharm. Res. 19, 286–291.

    CAS  Google Scholar 

  223. Nakanishi, K., Tamura, H., and Sugisawa, H. (1996) Volatile Components in Boiled and Raw Bamboo Shoots (Phyllostachys pubescens). Nippon Shokuhin Kagaku Kogaku Kaishi 43, 259–266.

    CAS  Google Scholar 

  224. Li, W., He, S., Gu, Y., and Song, C. (1998) Study on Volatile Constituents in Fruit of Blackberry (Rubus sp.). Zhongguo Yaoxue Zazhi (Beijing) 33, 335–336.

    CAS  Google Scholar 

  225. Takayama, A., Sasaki, I., and Uehara, S. (2001) Skin-Lightening Cosmetics Containing Black Currant Fruit Extracts and Skin Active Agents, Japan Kokai Tokkyo Koho, 10 pp., Japanese Patent: JP 2001278775 A 2 20011010. Application: JP 2000-372335 20001207.

  226. Zhao, H. (1991) The Main Biochemical Components in Black Tea and Green Tea of Anhui, Tianran Chanwu Yanjiu Yu Kaifa 3, 59–63.

    CAS  Google Scholar 

  227. Vernin, G., Parkanyi, C., and Casabianca, H. (2005) GC/MS Analyses of the Volatile Compounds of Tuber melanosporum from Tricastin and Alpes de Haute Provence (France). Special Publication-Royal Society of Chemistry 300, 115–135.

    CAS  Google Scholar 

  228. Shin, T.-S. (2003) Volatile Compounds in Sea Mustard, Undaria pinnatifida. Food Sci. Biotechnol. 12, 570–577.

    CAS  Google Scholar 

  229. Fristsch, M.-C., and Vacher, A.-M. (2000) Antricadical Synergistic Cosmetic Compostion Containing Chrysanthellum Extracts and Antioxidants, 13 pp., European Patent: EP, 968709 A1 20000105. Application: EP99-401508 19990617.

  230. Yang, Y., Shi, G., and Lu, R. (2004) Study on Volatile Constituents of Tibetan Medicine Chrysosplenium nudicaule Bune. Tianran Chanwu Yanjiu Yu Kaifa 16, 38–40.

    CAS  Google Scholar 

  231. Chen, Y., We, J., and Liang, N. (1993) Volatile Consituents of Fresh Yunshen (Codonopsis pilosula) Root. Zhongguo Zhongyao Zazhi 18, 492–493.

    CAS  Google Scholar 

  232. Njoroge, S.M., Ukeda, H., Kusunose, H., and Sawamura, M. (1994) Volatile Components of Japanese Yuzu and Lemon Oils. Flavour Fragrance J. 9, 159–166.

    Article  CAS  Google Scholar 

  233. He, F., Shi, X., Li, H., Tian, Y., Yang, J., Su, W., Chen, J., and Zhao, Y. (1995) Chemical Components of Essential Oils of Elsholtzia patrini Garcke, Yaowu Fenzi Zazhi 15, 20–22.

    Google Scholar 

  234. Sun, Y., Mao, K., Jiang, W., and Zhang, H. (1992) Structural Identification and Quantitative Analysis of Volatile Oil of Filipendula palmata Maxim. Jilin Daxue Ziran Kexue Xuebao 1, 119–121.

    Google Scholar 

  235. Kawasaki, K. (2005) tea Flavor Compositions and Their Use for Foods and Beverages, Japan Kokai Tokkyo Koho, 20 pp., Japanese Patent: JP 2005153467 A2 20050609. Application: JP 2003-390027 20031120.

  236. Lu, Q., Chao, H., and Li, X. (1989) Comparative Studies on Essential Oils from Xinkaihe White Ginserg, Korean White Ginseng, and Japanese White Ginseng. Zhongguo Yaozue Zazhi (Beijing, China) 24, 590–593.

    CAS  Google Scholar 

  237. Yassa, N., Akhani, H., Aqaahmadi, M. and Salimian, M. (2003) Essential Oils from Two Endemic Species of Apiaceae from Iran, Z. Naturforsch. 58C, 459–463.

    Google Scholar 

  238. Vernin, G., Lageot, C., Gaydou, E.M., and Parkanyi, C. (2001) Analysis of the Essential Oil of Lippia graveolens HBK from El Salvador, Flavour Fragrance J. 16, 219–226.

    Article  CAS  Google Scholar 

  239. Gong, F., and Wang, Y. (2004) Chemical Constituents, of the Volatile Oil from Lysimachia foenum-graecum Hance. Zhiwu Ziyuan Yu Huanjing Xuebao 13, 59–61.

    CAS  Google Scholar 

  240. Kobayashi, M., Takayama, A., Kameyama, K., Nagamine, K., Hayashi, M., and Yamazaki, K. (2005) Skin Compositions Containing Acerola Seed Extract and Other Active Component, Japan Kokai Tokkyo Koho, 38 pp., Japanese Patent: JP 2005220084 A2 20050818. Application: JP 2004-30451 20040206.

  241. MacLeod, A.J., MacLeod, G., and Snyder, C.H. (1988) Volatile Aroma Constituents of Mango (cv. Kensington). Phytochemistry, 27, 2189–2193.

    Article  CAS  Google Scholar 

  242. Kim, J.H., Liu, K.H., Yoon, Y., Sornnuwat, Y., Kitirattrakarn, T., and Anantachoke, C. (2005) Essential Leaf Oils from Melaleuca cajuputi, Acta Hortic. (S. Korea), 680, 65–72.

    CAS  Google Scholar 

  243. Fu, S., Huang, A., Liu, H., Sun, Y., Wu, Q., and Xia, Y. (1993) Studies of Flavor Components of Lotus Leaf. (II). Analysis of Its Essential Oil and Comparison with Its Natural Flavor, Beijing Daxue Xuebao, Ziran Kexueban 29, 157–163.

    CAS  Google Scholar 

  244. Gupta, G.N., Talwar, W.P., Nigam, M.C., and Handa, K.L. (1964) The Essential Oil of Nepeta leucophylla, Soap Perfum. Cosmet. (Lond.) 37, 45–46.

    CAS  Google Scholar 

  245. Guillen, M.D., and Manzanos, M.J. (2001) Some Compounds Defected for the First Time in Oak Wood Extracts by GC/MS. Sci. Aliments 21, 65–70.

    CAS  Google Scholar 

  246. Xue, Y., Xian, Q., and Zhang, H. (1995) Chemical Constituents of the Essential Oil from the Root of Ostericum grosseserratum (Maxim.) Kitag. Zhiwu Ziyuan Yu Huanjing 4, 61–63.

    CAS  Google Scholar 

  247. Liu, Z.-Q., Wang, H., Lin, Y.-J., Luo, X.-Y., Wang, J.-H., Sun, Y.-X., Wang, L.-F., and Li, J. (2002) Isolation and Identification of Oxo-compounds from Volatile Oil of Ginseng Stems and Leaves, Yingyong Huaxue 19, 196–198.

    CAS  Google Scholar 

  248. Zhang, H., Sun, Y., Jiang, W., and Kang, C. (1987) Analysis of the Volatile Components of Ginseng. (V). Dividing the Ginseng Volatile Oil into Groups with Chemical Method and Determining Their Structures. Jilin Daxue Ziran Kexue Xuebao 2, 89–94.

    Google Scholar 

  249. Abhyankar, G., Reddy, V.D., Giri, C.C., Rao, K.V., Lakshmi, V.V.S., Prabhakar, S., Vairamani, M., Thippeswamy, B.S., and Bhattacharya, P.S. (2005) Amplified Fragment Length Polymorphism and Metabolomic Profiles of Hairy Roots of Psoralea corylifolia L., Phytochemistry 66, 2441–2457.

    Article  PubMed  CAS  Google Scholar 

  250. Shi, H., He, L., Zou, J., and Pan, Y. (2002) Analysis of Essential Oil Composition of Rabdosia macrocalyx by Gas Chromatography/Mass Spectrometry. Fenxi Huaxue 30, 586–589.

    CAS  Google Scholar 

  251. Zhao, H. (1991) Major Chemical Changes During Processing of Qimen Red Tea, Shipin Kexue (Beijing. China) 143, 11–13.

    CAS  Google Scholar 

  252. Lu, Y., Wen, J., and Zhu, W. (2001) Chemical Constituents from Essential Oil of Sparassis crispa, Tianran Chanwu Yanjiu Yu Kaifa 13, 39–41.

    CAS  Google Scholar 

  253. Liu, M., Chen, Y., Wang, Y., and Xing, S. (1991) A study of the Volatile Oif from Stellaria Root, Shenyang Yaoxueyuan Xuebao 8, 134–136.

    CAS  Google Scholar 

  254. Nie, J.-Y., Liao, C.-Y., Wu, S.-R., and Li, Z.-L. (2004) Estimation and Prediction of Gas Chromatography Retention Time of Components Separated from Symplocos sumunlia Through MEDV, Jingxi Huagong 21, 273–278.

    CAS  Google Scholar 

  255. Zhao, X., Li, Z., Chen, N., and Yan, Q. (1992) Study of Chemical Constituents of Volatile Oil of Zanthoxylum bungeanum Maxim, Lanzhou Daxue Xuebao, Ziran Kexueban 28, 74–77.

    CAS  Google Scholar 

  256. Lee, M.-J., Jung, E.-J., Cho J.-E., Lee, Y.-B., Cho, H.-J., and Yoon, J. (2002) Comparisons of Volatile Compounds Extracted from Pinus densiflora by Headspace Analysis, Han'guk Sikp'um Yongyang Kwahak Hoechi (S. Korea), 31, 26–31.

    CAS  Google Scholar 

  257. Bohlmann, F., and Kleine, K.M. (1965) Polyacetylenic Compounds. LXXXVI. Natural Red Sulfur-Acetylene Compounds, Chem. Ber. 98, 3081–3086.

    CAS  Google Scholar 

  258. Yang, X., Hou, R., Zhao, H., and Zhang, P. (2002) Study on GC/MS Analysis of Volatile Components from Fresh, Arillus longan, Shipin Kexue (Beijing, China) 23, 123–125.

    Google Scholar 

  259. Tanchotikul, U., and Hsieh, T.C.Y. (1989) Volatile Flavor Components in Crayfish Waste, J. Food Sci. 54, 1515–1520.

    Article  CAS  Google Scholar 

  260. Jiang, A., Sun, L., and Qiu, H. (2004) Extraction of Antioxidant from Dalbergia odorifera T. Chen and Its Antioxidant Activity. Zhongguo Youzhi 29, 50–52.

    CAS  Google Scholar 

  261. Wilkins, K., and Larsen, K. (1996) Volatile Organic Compounds from Garden Waste, Chemosphere 32, 2049–2055.

    Article  CAS  Google Scholar 

  262. Abuzeina, A.A.E.S., Handjieva, N., Popov, S., and Evstatieva, L. (1993) Volatile Constituents from Lamium maculatum Leaves and Nepeta mussini Roots. Dokl. Bulg. Akad. Nauk 46, 37–39.

    CAS  Google Scholar 

  263. Chen, Y., Huang, Z., Li, N., Cheng, G., Cao, S., and Zhang, Q. (1982) Study on the Volatile Oil of Panax ginseng, Zhong Yao Tong Bao 7, 29–31.

    PubMed  CAS  Google Scholar 

  264. Zheng, S.-Z., Guo, Z., Dai, R., Wang, J.-X., Ren, R., and Shen, X.-W. (2001) Chemical Constituents of the Essential Oil of the Leaf of Salix matsudana K. Prepared by Supereritical CO2 Fluid Extraction. Xibei Shifan Daxue Xuebao, Ziran Kexueban 37, 40–43.

    CAS  Google Scholar 

  265. Cheng, M.-J., Tsai, I.-L., and Chen, I.-S. (2001) Chemical Constituents from Strychnos cathayensis. J. Chim. Chem. Soc. (Taipei, Taiwan) 48, 235–239.

    CAS  Google Scholar 

  266. MacDonal, J.C. (1972) New Analogs of Aspergillic Acid Derived from Methionine, Can. J. Biochem. 50, 543–548.

    Article  Google Scholar 

  267. Iranshahi, M., Amin, G.-R., Amini, M., and Shafiee, A. (2003) Sulfur Containing Derivatives from Ferula persica var, Latisecta, Phytochemistry 63, 965–966.

    Article  PubMed  CAS  Google Scholar 

  268. Castro-Gamboa, I., Da Silva, M.F., das, G.F., Fo, E.R., Fernandes, J.B., Vieira, P.C., and Pinheiro, A.L. (2004) Unusual Natural 9.10-Dihydrophenanthrenes from Roots of Toona ciliata. ARKIVOC (Gainesville) 6, 45–53.

    Google Scholar 

  269. Baek, N.I., Ahn, E.-M., Kim, H.-Y., and Park, Y.-D. (2000) Furanocoumarins from the Root of Angelica dahurica Arch. Pharmacol. Res. (S. Korea) 23, 467–470.

    CAS  Google Scholar 

  270. Chen, N., Zai, J., Pan, H. He, Y., Song, Z., and Jia, Z. (1992) Chemical Constituents of Essential Oils of Three Species of Saussurea, Yumman Zhi Wu Yan Jiu 14, 203–210.

    CAS  Google Scholar 

  271. Peng, F., Sheng, L., Liu, B., Tong, H., and Liu, S. (2004) Comparison of Different Extraction Methods: Steam Distillation, Simultaneous Distillation and Extraction and Headspace Co-Distillation, Used for the Analysis of the Volatile Components in Aged Flue-Cured Tobacco Leaves, J. Chromatogr. A 1040, 1–17.

    Article  PubMed  CAS  Google Scholar 

  272. Drochner, D. (2004) Untersuchungen zur Biosynthese von Biarylnaturstoffen in dem Filamentösen Pilz Penicillium citreo-viride (Studies on the Biosynthesis of Biaryl Natural Products in the Filamentous Fungus Penicillium citreo-viride), Berichte des Forschungszentrums Juelich, (Juel-4117). Thesis, Friedrich Wilhelms Universität, Bonn. pp. 1–196.

    Google Scholar 

  273. Landshuter, J., Pohmueller, E.-M., and Knobloch, K. (1994). Purification and Characterization of a C-S-Lyase from Ramson, the Wild Garlic. Allium ursinum. Planata Med. 60, 343–347.

    Article  CAS  Google Scholar 

  274. Ji, A., Mueller, M., Wolberg, M., and Wandrey, C. (2002) Chemo-biosynthesis of (4R, 5S)-tert-Butyl-4-methyl-3,5-didydroxyhexanoate, Yaowu Shengwu Jishu 9, 212–215.

    CAS  Google Scholar 

  275. Svetlova, N.I., Zhuravleva, I.L., Grigor'eva, D.N., and Golovnya, R.V. (1986) Gas Chromatographic Investigation of Changes in the Volatile Amine Composition During Storage of Bakery Yeast Autolysate, Symp. Biol. Hung. 34, 155–168.

    CAS  Google Scholar 

  276. Kawasaki, K. (2003) Fragrance Compositions for Bath Compositions, Japan Kokai Tokkyo Koho, 51 pp., Japanese Patent: JP 2003081804 A2 20030319. Application: JP 2001-270452 20010906.

  277. Fusaro, R.M., and Johnson, J.A. (1991) Topical Photoprotection for Hereditary Polymorphic Light Eruption of American Indians. J. Am. Acad. Dermatol. 24, 744–746.

    Article  PubMed  CAS  Google Scholar 

  278. Lener, M.E. (1991) Photoplex, Am. Pharmacol. 31, 39–43.

    Google Scholar 

  279. Whitmore, F.C., Homeyer, A.H., Jones, D.M., and Trent, W.R. (1936) Highly Branched, Long-Chain Organic Acids. U.S. Patent: 2,032,159.

  280. Larsson K., Noren, B., and Odham, G. (1975) Antimicrobial Effect of Simple Lipids with Different Branches at the Methyl End Group, Antimicrob. Agents Chemother. 8, 742–750.

    PubMed  CAS  Google Scholar 

  281. Rephaeli, A., Rabizadeh, E., Aviram, A., Shaklai, M., Ruse, M., and Nudelman, A. (1991). Derivatives of Butyric Acid as Potential Anti-neoplastic Agents. Int. J. Cancer 49, 66–72.

    PubMed  CAS  Google Scholar 

  282. Zimra, Y., Wasserman, L., Maron, L., Shaklai, M., Nudelman, A., and Rephaeli, A. (1997) Butyric Acid and Pivaloyloxymethyl Butyrate, AN-9, a Novel Butyric Acid Derivative, Induce Apoptosis in HL-60 Cells, J. Cancer Res. Clin. Oncol. 123, 152–160.

    PubMed  CAS  Google Scholar 

  283. Townsend, G.F., Baxter, N., Brown, W.H., and Felauer, E.E. (1996), The in vivo Antitumor Activity of Certain Short-Chain Fatty Acids, Can. J. Biochem. Physiol. 44, 209–218.

    Google Scholar 

  284. Showa Denko, K.K. (1981) Antitumor Pivaloyl-phenothiazine, Japan Kokai Tokkyo Koho, 3 pp. Japanese Patent: JP 56166184 A2 19811221 Showa. Application: JP 80-68838 19800526.

  285. Souers, A.J., Wodka, D., Gao, J., Lewis, J.C., Vasudevan, A., Gentles, R., Brodjian, S., Dayton, B., Ogiela, C.A., Fry, D., et al. (2004) Synthesis and Evaluation of 2-Amino-8-alkoxy Quinolines as MCHr1 Antagonists. Part 1, Bioorg. Med. Chem. Lett. 14, 4873–4877.

    Article  PubMed  CAS  Google Scholar 

  286. Liu, H., Kerdesky, F.A., Black, L.A., Fitzgerald M., Henry, R., Esbenshade, T.A., Hancock, A.A., and Bennani, Y.L. (2004) An Effecient Multigram Synthesis of the Potent Histamine H3 Antagonist GT-2331 and the Reassessment of the Absolute Configuration. J. Org. Chem. 69, 192–194.

    Article  PubMed  CAS  Google Scholar 

  287. Krueger, K.M., Witte, D.G., Ireland-Denny, L., Miller, T.R., Baranowski, J.L., Buckner, S., Milicic, I., Esbenshade, T.A., and Hancock, A.A. (2005) G Protein-Dependent Pharmacology of Histamine H3 Receptor Ligands: Evidence for Heterogeneous Active State Receptor Conformations, J. Pharmacol. Exp. Ther. 314, 271–281.

    Article  PubMed  CAS  Google Scholar 

  288. Miyazawa, M., and Hashimoto, Y. (2002) Antimicrobial and Bactericidal Activities of Esters of 2-endo-Hydroxy-1,8-cineole as New Aroma Chemicals. J. Agric. Food Chem. 50, 3522–3526.

    Article  PubMed  CAS  Google Scholar 

  289. Salama, Z.B. (2005) Preparation of Water Soluble 4-Amino-2-butynyl Esters Having Anticancer Activity, PCT Int. Appl., 92 pp., WO 2005095369 Al 20051013. Application: WO 2004-EP2090 20040302.

  290. Yamada, H., Arai, T., Endo, N., Yamashita, K., Nonogawa, M., Makino, K., Fukuda, K., Sasaka, M., and Uchiyama, T. (2005) Photodynamic Effects of a Novel Pterin Derivative on a Pancreatic Cancer Cell Line, Biochem. Biophys. Res. Commun. 333 763–767.

    Article  PubMed  CAS  Google Scholar 

  291. Winterfeldt, E., Kramer, A., Ullmann, U., and Laurent, H. (1994) Preparation of Cephalostatin Analogs as Neoplasm Inhibitors, 13 pp., German Patent: DE 4318924 A1 19941208. Application: DE 93-4318924 19930603.

  292. Montazeri, G. (2006) Current Treatment of Chronic Heptitis B. Arch. Iran Med. 9, 1–10.

    PubMed  CAS  Google Scholar 

  293. Kapa, P.K., Lee, G.T., Nadelson, J., Simpson, W.R.J., and Sunay, U.B. (1992) Preparation of Pivaloylbenzoyl N-Alkoxypivaloylbenzimidates as Antidiabetic and Anti-cholestero lemic Agents, Eur. Pat. Appl., 18 pp., European Patent: EP 463989 A1 19920102. Application: EP 91-810448 19910612.

  294. Nakazawa, S., Tajima, S., Otsuki, M., Amano, M., and Hatsushita, H. (1974) Bacteriological Studies on Pivampicillin, a New Synthetic Penicillin Derivative, Chemotherapy (Tokyo) 22, 319–328.

    CAS  Google Scholar 

  295. Anderson, J.D., Adams, M.A., Wilson, L.C., and Shepherd, C.A. (1976) Studies on the Effect of Mecillinam upon Micrococcaceae and Fecal Streptococci Under Conditions Simulating Urinary Tract Infection, J. Antimicrob. Chemother. 2, 351–361.

    Article  PubMed  CAS  Google Scholar 

  296. Kawamura, H., Ikeda, M., Kato, H., and Hashiguchi, T. (1996) Preparation of O-Pivaloyltyrosine Derivatives as Elastase Inhibitors, Japan Kokai Tokkyo Koho, 16 pp., Japanese Patent: JP 08119922 A2 19960514 Heisei. Application: JP 94-257080 19941021.

  297. Motoi, T. (1987) Skin Conditioners Containing a Pivaloyaascorbic Acid and Vitamin E Derivatives, Japan Kokai Tokkyo Koho, 6 pp., Japanese Patent: JP 61085308 A2 19860430 Showa. Application: JP 84-206871 19841001

  298. Kraft, P., Popaj, K., and Abate, A. (2005) Design, Synthesis and Olfactory Properties of 2-Substituted 2-tert-Butyl-5-methyl-2,5-dihydrofurans: Seco-derivatives of Theaspiranes, Synthesis (Mass.) 16, 2798–2809.

    Article  CAS  Google Scholar 

  299. Arnaud, P. (2003) Cosmetic Composition Comprising a Fatty Phase Consisting of Carboxylic Acid Esters with Polyols, 20 pp., France Patent: FR 2838049 A1 20031010, Application: FR 2002-4151, 20020403.

  300. Steltenkamp, R.J., and Camara, M.A. (1987) Wash Cycle Additive Antistatic Composition for Treatment of Laundry, Process for Manufacture of Such Composition, and Method of Use Thereof, 8 pp., U.S., Patent 4,715,970.

  301. Steltenkamp, R.J., and Camara, M.A. (1986) Antistatic Compositions and Detergent Compositions Containing Them, Ger. Offen. 55 pp., German Patent: DE 361 9807 A1 1986 1218. Application: DE 86-3619807 19860612.

  302. Matsuda, H., and Yamamoto, T. (1988) Perfumes Containing 2,4-Di-tert-butylcyclohexamone, Eur. Pat. Appl. 12 pp., European Patent: EP 296798 A2 19881228 Application: EP 88305637 19880621.

  303. Sonnet, P.E., McGovern, T.P., and Cunningham, R.T. (1984) Enantiomers of the Biologically Active Components of the Insect Attractant Trimedlure, J. Org. Chem. 49, 4639–4643.

    Article  CAS  Google Scholar 

  304. Babu, T.H., and Slama, K. (1972) Systemic Activity of a Juvenile Hormone Analog, Science 175, 78–79.

    Article  PubMed  CAS  Google Scholar 

  305. Maleeny, R., Vick, D., Kinney, J., Ziser, D., and Laky, R. (2003) Scented Paints, Paint Scenting Additive Mixtures and Processes for Producing Scented Paints, U.S. Patent: 6,838,492.

  306. Motoyama, K., Kamoto, T., Nakaya, H., Fujii, I., Nakatsu, H., and Nakamura, M. (2002) Aqueous Ink-Jet Inks with Fast Dryability and Storage Stability, Japan Kokai Tokkyo Koho, 6 pp., Japanese Patent: JP 2002348506 A2 20021204. Application: JP 2001-157108 20010525.

  307. Palmer, C.J., and Casida, J.E. (1992) Insecticidal 1,3-Dithianes and 1,3-Dithiane 1,1-dioxides, J. Agric. Food Chem. 40, 492–496.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery M. Dembitsky.

About this article

Cite this article

Dembitsky, V.M. Natural neo acids and neo alkanes: Their analogs and derivatives. Lipids 41, 309–340 (2006). https://doi.org/10.1007/s11745-006-5103-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-006-5103-9

Keywords

Navigation