Skip to main content
Log in

Molecular characterization, expression and functional analysis of the amino acid transporter gene family (OsAATs) in rice

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Nitrogen (N) is one of the most important limiting factors for plant growth and development. Amino acids are the major source of organic N, which is converted from inorganic N absorbed by plant roots from the soil. Amino acid transporters are the principal mediators of organic N distribution and important regulators of resource allocation in plants. Although the complete genomic sequence of rice has already been released, there is still little known about amino acid transporter genes in rice. In this study, 79 OsAAT genes were identified by a database search of the rice genome based upon HMM profiles. A bioinformatics analysis of the complete set of OsAAT genes is presented, including chromosomal location, phylogenetic analysis, gene structure, protein analysis, conserved motifs, protein structures and cis-element analysis of the promoters. In addition, the comprehensive expression profile of OsAAT genes in rice tissues/organs under N starvation conditions was investigated by real-time PCR analysis. Diverse expression patterns of OsAAT genes indicated diverse biological functions of the amino acid transporters and the important roles of OsAAT genes in N uptake, metabolism and distribution during N starvation. The evaluation of yield and carbon (C) and N content of osaat knockout mutants also suggested the important roles of the OsAAT5, OsAAT7, OsAAT24, OsAAT49 and OsAAT60 genes in yield and biomass production and C and N metabolism and distribution in rice plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal M, Hao Y, Kapoor A, Dong CH et al (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    PubMed  CAS  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST et al (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950

    Article  PubMed  CAS  Google Scholar 

  • Carginale V, Maria G, Capasso C, Ionata E et al (2004) Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display. Gene 332:29–34

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Ortiz-Lopez A, Jung A, Bush DR (2001) ANT1, an aromatic and neutral amino acid transporter in Arabidopsis. Plant Physiol 125:1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125:61–64

    Article  PubMed  CAS  Google Scholar 

  • Couturier J, Doidy J, Guinet F, Wipf D et al (2010a) Glutamine, arginine and the amino acid transporter Pt-CAT11 play important roles during senescence in poplar. Ann Bot 105:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Couturier J, de Fay E, Fitz M, Wipf D et al (2010b) PtAAP11, a high affinity amino acid transporter specifically expressed in differentiating xylem cells of poplar. J Exp Bot 61:1671–1682

    Article  PubMed  CAS  Google Scholar 

  • Dündar E, Bush D (2009) BAT1, a bidirectional amino acid transporter in Arabidopsis. Planta 229:1047–1056

    Article  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Fischer WN, Andree B, Rentsch D, Krolkiewicz S et al (1998) Amino acid transport in plants. Trends Plant Sci 3:188–195

    Article  Google Scholar 

  • Frommer WB, Hummel S, Riesmeier JW (1993) Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci USA 90:5944–5948

    Article  PubMed  CAS  Google Scholar 

  • Gowik U, Burscheidt J, Akyildiz M, Schlue U et al (2004) cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16:1077–1090

    Article  PubMed  CAS  Google Scholar 

  • Guo MG (2004) Molecular and genomic analysis of nitrogen regulation of amino acid permease I (AAP1) in Arabidopsis. PhD dissertation, University of Illinois at Urbana-Champaign, Urbana, IL

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

    PubMed  CAS  Google Scholar 

  • Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–161

    Article  PubMed  CAS  Google Scholar 

  • Hammes UZ, Nielsen E, Honaas LA, Taylor CG et al (2006) AtCAT6, a sink-tissue-localized transporter for essential amino acids in Arabidopsis. Plant J 48:414–426

    Article  PubMed  CAS  Google Scholar 

  • Hartmann U, Sagasser M, Mehrtens F, Stracke R et al (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S et al (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  PubMed  CAS  Google Scholar 

  • Hsu LC, Chiou TJ, Chen L, Bush DR (1993) Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc Natl Acad Sci USA 90:7441–7445

    Article  PubMed  CAS  Google Scholar 

  • Hunt E, Gattolin S, Newbury HJ, Bale JS et al (2010) A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. J Exp Bot 61:55–64

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Khurana P, Tyagi AK, Khurana JP (2008) Genome-wide analysis of intronless genes in rice and Arabidopsis. Funct Integr Genomics 8:69–78

    Article  PubMed  CAS  Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372

    Article  PubMed  CAS  Google Scholar 

  • Le Gourrierec J, Li YF, Zhou DX (1999) Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA–TBP–TATA complex. Plant J 18:663–668

    Article  PubMed  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Zhu W, Silva JC, Gu X et al (2006) Intron gain and loss in segmentally duplicated genes in rice. Genome Biol 7:41

    Article  Google Scholar 

  • Liu X, Bush DR (2006) Expression and transcriptional regulation of amino acid transporters in plants. Amino Acids 30:113–120

    Article  PubMed  Google Scholar 

  • Liu G, Ji Y, Bhuiyan NH, Pilot G et al (2010) Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell 22:3845–3863

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Marvier AC, Neelam A, Bick JA, Hall JL et al (1998) Cloning of a cDNA coding for an amino acid carrier from Ricinus communis (RcAAP1) by functional complementation in yeast: kinetic analysis, inhibitor sensitivity and substrate specificity. Biochim Biophys Acta 1373:321–331

    Article  PubMed  CAS  Google Scholar 

  • Miranda M, Borisjuk L, Tewes A, Heim U et al (2001) Amino acid permeases in developing seeds of Vicia faba L.: expression precedes storage protein synthesis and is regulated by amino acid supply. Plant J 28:61–71

    Article  PubMed  CAS  Google Scholar 

  • Montamat F, Maurousset L, Tegeder M, Frommer W et al (1999) Cloning and expression of amino acid transporters from broad bean. Plant Mol Biol 41:259–268

    Article  PubMed  CAS  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y et al (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  PubMed  CAS  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ et al (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  CAS  Google Scholar 

  • Okumoto S, Koch W, Tegeder M, Fischer WN et al (2004) Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. J Exp Bot 55:2155–2168

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Lopez A, Chang HC, Bush DR (2000) Amino acid transporters in plants. Biochem Biophys Acta 1465:275–280

    Article  PubMed  CAS  Google Scholar 

  • Popova OV, Dietz KJ, Golldack D (2003) Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum. Plant Mol Biol 52:569–578

    Article  PubMed  CAS  Google Scholar 

  • Raes J, Vandepoele K, Simillion C, Saeys Y et al (2003) Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 3:117–129

    Article  PubMed  CAS  Google Scholar 

  • Roy SW, Penny D (2007) Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol Biol Evol 24:171–181

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sanders A, Collier R, Trethewy A, Gould G et al (2009) AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J 59:540–552

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Grallath S, Breitkreuz KE, Stransky E et al (1999) LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen. Plant Cell 11:377–391

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Simillion C, Vandepoele K, Van-Montagu MC, Zabeau M et al (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci USA 99:13627–13632

    Article  PubMed  CAS  Google Scholar 

  • Su YH, Frommer WB, Ludewig U (2004) Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. Plant Physiol 136:3104–3131

    Article  PubMed  CAS  Google Scholar 

  • Svennerstam H, Ganeteg U, Bellini C, Na¨sholm T (2007) Comprehensive screening of Arabidopsis mutants suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol 143:1853–1860

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) Mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596

    Article  PubMed  CAS  Google Scholar 

  • Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Ann Rev Genet 9:615–643

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Shi X, Hao B, Ge S et al (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z et al (2007) Genome-wide analysis of the auxin response factors ARF gene family in rice Oryza sativa. Gene 394:13–24

    Article  PubMed  CAS  Google Scholar 

  • Wipf D, Ludewig U, Tegeder M, Rentsch D et al (2002) Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 27:139–147

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Zhang ZL, Zou X, Huang J et al (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21:281–288

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S, Schmidt RJ (1999) Diversity and similarity among recognition sequences of Dof transcription factors. Plant J 17:209–214

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Bogner M, Stierhof Y-D, Ludewing U (2010) H+-independent glutamine transport in plant root tips. PLoS ONE 5(1):e8917

    Article  PubMed  Google Scholar 

  • Yoshida S, Forno DA, Cook JH, Gomez KA (1976) Laboratory manual for physiological studies of rice, 3rd edn. International Rice Research Institute, Manila

    Google Scholar 

  • Zhang QF (2007) Strategies for developing green super rice. Proc Natl Acad Sci USA 104:16402–16409

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZL, Xie Z, Zou X, Casaretto J et al (2004) A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134:1500–1513

    Article  PubMed  CAS  Google Scholar 

  • Zhou DX (1999) Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci 4:210–214

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Natural Science Foundation of China (31000932), the Specialized Research Found for the Doctoral Program of Higher Education, the Ministry of Education of China (20100146120017), the Special Fund for Agro-scientific Research in the Public Interest (201003016), and the Fundamental Research Funds for the Central Universities (2009BQ078, 2011PY150). We thank Prof. Qifa Zhang and Fangsen Xu for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Cai.

Additional information

Communicated by J. W. Sadowski.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Song, Z., Lü, K. et al. Molecular characterization, expression and functional analysis of the amino acid transporter gene family (OsAATs) in rice. Acta Physiol Plant 34, 1943–1962 (2012). https://doi.org/10.1007/s11738-012-0995-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-0995-x

Keywords

Navigation