Skip to main content
Log in

Agrobacterium-mediated transformation of Lupinus mutabilis L. using shoot apical explants

  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

A procedure for regenerating plants of Lupinus mutabilis from shoot apices, from which the leaf primordia and initial cell layer(s) of the apical meristem were removed, has been used to generate transgenic plants following Agrobacterium tumefaciens-mediated gene delivery. Transformation competent cells, from which buds developed, were located at the periphery of the apical meristem. Kanamycin resistant plants were obtained which expressed β-glucuronidase activity. Integration of the neomycin phosphotransferase II and β-glucuronidase genes into the genomes of transgenic plants was confirmed by non-radioactive DNA-DNA hybridisation. This is the first report of the generation of transgenic plants in L. mutabilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAP:

6-benzylamino purine

bar :

bialaphos (phosphinothricin) resistance gene

CPPU:

N-(2-chloro-4-pyridyl)-N′-phenylurea

DAS:

Double Antibody Sandwich

GUS:

β-glucuronidase

IBA:

indole-3-butyric acid

MS:

Murashige and Skoog (1962)

4-MU:

4-methylumbelliferyl glucuronide

NAA:

α-naphthaleneacetic acid

NPTII:

neomycin phosphotransferase

X-Gluc:

5-bromo-4-chloro-3-indolyl-β-D-glucuronide

References

  • Berlin J., Fecker L., Rugenhagen C., Sator C., Strack D., Witte L., Wray V. 1991a. Isoflavone glycoside formation in transformed and non-transformed suspension and hairy root cultures of L. polyphyllus and L. hartwegii. Z. Naturforsch. 46c: 725–734.

    Google Scholar 

  • Berlin J., Rugenhagen C., Rippert M., Erdogan S. 1991b. Effects of culture conditions on isoflavonoid levels of transformed and non-transformed cultures of Lupinus — A comparison of suspension and hairy root cultures. Z. Naturforsch. 46c: 735–742.

    Google Scholar 

  • Berlyn G.P., Miksche J.P. 1976. Botanical microtechnique and cytochemistry. Iowa State University Press, Ames, Iowa, pp 30–65.

    Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Christou P. 1992. Genetic engineering and in vitro culture of crop legumes. Technomic Publishing Co. Inc., Lancaster, USA.

    Google Scholar 

  • Curtis I.S., Power J.B., Blackhall N.W., de Laat A.M.M., Davey M.R. 1994. Genotype-independent transformation of lettuce using Agrobacterium tumefaciens. J. Exp. Bot. 45: 1441–1449.

    Article  CAS  Google Scholar 

  • Dellaporta S.L., Wood J., Hicks J.B. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Reporter 4: 9–21.

    Google Scholar 

  • Fontana G.S., Santini L., Caretto S., Frugis G., Mariotti D. 1993. Genetic transformation in the grain legume Cicer arietinum L. (Chickpea). Plant Cell Rep. 12: 194–198.

    Article  CAS  Google Scholar 

  • Fromm M.E., Taylor L.P., Walbot V. 1986. Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg O.L., Miller R.A., Ojima K. 1968. Nutrition requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50: 151–159.

    Article  PubMed  CAS  Google Scholar 

  • Gartland K.M.A., Phillips J.P., Vitha S., Benes K. 1995. Fluorometric GUS analysis for transformed plant material. In: Methods in Molecular Biology Vol 44. Agrobacterium Protocols, ed. by K.M.A. Gartland, M.R. Davey, Humana Press Publ., Totowa, USA: 195–199.

    Google Scholar 

  • Gladstones J.S. 1984. Present situation and potential of Mediterranean/African lupins for crop production. In: Proc. Third Internatl. Lupin Conf., La Rochella, France: 18–37.

  • Hussey G., Johnson R.D., Warren S. 1989. Transformation of meristematic cells in the shoot apex of cultured pea shoots by Agrobacterium tumefaciens and A. rhizogenes. Protoplasma 148: 101–105.

    Article  Google Scholar 

  • Jacobsen H.J. 1992. Biotechnology applied to grain legumes — current state and prospects. In: Proc. 1st European Conf. on Grain Legumes, Angers, France: 99–103.

  • Jefferson R.A., Kavanagh T.A., Bevan M.W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  • Jin S., Komari T., Gordon M.P., Nester E.W. 1987. Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J. Bacteriol. 169: 4417–4425.

    PubMed  CAS  Google Scholar 

  • Kathen A. de, Jacobsen H.J. 1995. Cell competence for Agrobacterium-mediated DNA transfer in Pisum sativum L. Transgenic Res. 4: 184–191.

    Article  Google Scholar 

  • Lion T., Haas O.A. 1990. Nonradioactive labeling of probe with digoxigenin by polymerase chain reaction. Anal. Biochem. 188: 335–337.

    Article  PubMed  CAS  Google Scholar 

  • Marchant R., Davey M.R., Lucas J.A., Lamb C.J., Dixon R.A., Power J.B. 1998. Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosae Wolf). Molec. Breed. 4: 187–194.

    Article  CAS  Google Scholar 

  • McCabe M.S., Power J.B., de Laat A.M.M., Davey M.R. 1996. Detection of single copy genes in DNA from transgenic plants by non-radioactive Southern blot analysis. Mol. Biotechnol. 7: 1–6.

    Google Scholar 

  • Medford J.I. 1992. Vegetative apical meristems. The Plant Cell 4: 1029–1039.

    Article  PubMed  Google Scholar 

  • Micallef M.C., Austin S., Bingham E.T. 1995. Improvement of transgenic alfalfa by backcrossing. In Vitro Cell Dev. Biol.-Plant 131: 187–192.

    Article  Google Scholar 

  • Molvig L., Tabe L.M., Eggum B.O., Moore A.C., Craig S., Spencer D., Higgins T.J.V. 1997. Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc. Natl. Acad. Sci. USA 94: 8393–8398.

    Article  PubMed  CAS  Google Scholar 

  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nadolska-Orczyk A. 1992. Somatic embryogenesis of agriculturally important lupin species (Lupinus angustifolius, L. alba, L. mutabilis). Plant Cell Tiss. Org. Cult. 28: 19–25.

    Article  CAS  Google Scholar 

  • Nauerby B., Madsen M., Christiansen J., Wyndaele R. 1991. A rapid and efficient regeneration system for pea (Pisum sativum), suitable for transformation. Plant Cell Rep. 9: 676–697.

    Article  Google Scholar 

  • Phoplonker M.A., Caligari P.D.S. 1992. Callus formation and plant regeneration in Lupinus mutabilis. In: Proc Ist European Conf. on Grain Legumes, Angers, France: 109–110.

  • Pigeaire A., Abernethy D., Smith P.M., Simpson K., Fletcher N., Lu C.Y., Atkins C.A., Cornish E. 1997. Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Molec. Breed. 3: 341–349.

    Article  CAS  Google Scholar 

  • Pythoud F., Sinkar V.P., Nester E.W., Gordon M.P. 1987. Increased virulence of Agrobacterium rhizogenes conferred by the vir region of pTiBo542: application to genetic engineering of poplar. Bio/Technol. 5: 1323–1327.

    Article  Google Scholar 

  • Römer P., Jahn-Deesbach W. 1988. Developments in Lupinus mutabilis breeding. In: Proc. Vth Internatl. Lupin Conf., Poznan, Poland: 41–50.

  • Römer P., Weissmann E. 1990. Perspectives of practical lupin breeding. In: Proc VIth Internatl. Lupin Conf., Temuco, Chile: 350–362.

  • Saalbach I., Pickardt T., Machemehl F., Saalbach G., Schieder O., Muntz K. 1994. A chimeric gene encoding the methionine-rich 2S albumin of the Brazil nut (Bertolletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legumes. Mol. Gen. Genet. 242: 226–236.

    Article  PubMed  CAS  Google Scholar 

  • Sator C. 1990. Lupins (Lupinus spp.). In: Biotechnology in Agriculture and Forestry. Legumes and Oilseed Crops I, Vol 10, ed. By Y.P.S. Bajaj, Springer-Verlag Publ., Heidelberg: 288–311.

    Google Scholar 

  • Schroeder H.E., Gollasch S., Moore A., Tabe L.M., Craig S., Hardie D.C., Chrispeels M.J., Spencer D., Higgins T.J.V. 1995. Bean α-amylase confers resistance to the Pea Weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol. 107: 1233–1239.

    PubMed  CAS  Google Scholar 

  • Somsap V., Cooper J.I., Li D., Jones M.G.K. 1994. Tissue culture and transformation of lupins. In: Abstracts VIIIth Internatl. Congr. Plant Tiss. and Cell Cult., Firenze, Italy: S1–25.

  • Sroga G.E. 1987. Plant regeneration of two Lupinus spp. from callus cultures via organogenesis. Plant Sci. 51: 245–249.

    Article  Google Scholar 

  • Taylor B.H., Amasino R.M., White F.F., Nester E.W., Gordon M.P. 1985. T-DNA analysis of plants regenerated from hairy root tumours. Mol. Gen. Genet. 201: 554–557.

    Article  CAS  Google Scholar 

  • Vancanneyt G., Schmidt R., O’Connor-Sanchez A., Willmitzer L., Rosa-Sosa M. 1990. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220: 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Warkentin T.D., McHughen A. 1992. Agrobacterium tumefaciens-mediated beta-glucuronidase (GUS) gene expression in lentil (Lens culinaris Medik.) tissues. Plant Cell Rep. 11: 274–278.

    Article  CAS  Google Scholar 

  • Werbrouck S.P.O., Debergh P.C. 1994. Applied aspects of plant regeneration. In: Plant Cell Culture: A Practical Approach. Second Editn, ed. by R.A. Dixon, R.A. Gonzales, IRL Oxford University Press Publ., Oxford, UK: 127–135.

    Google Scholar 

  • Wink M. 1988. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 75: 225–233.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babaoglu, M., McCabe, M.S., Power, J.B. et al. Agrobacterium-mediated transformation of Lupinus mutabilis L. using shoot apical explants. Acta Physiol Plant 22, 111–119 (2000). https://doi.org/10.1007/s11738-000-0064-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-000-0064-8

Key words

Navigation