Skip to main content
Log in

Technologies for extracting lipids from oleaginous microorganisms for biodiesel production

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Recently, biodiesel has received much more attention. Soybean oil, rapeseed oil, palm oil and corn oil are primary feedstock for biodiesel production. However, biodiesel production from these traditional oil-rich crops is limited by land availability, climate, and environmental and social issues regarding the use of feed and food crops for fuel. Oleaginous microorganisms, including micro-algae, bacteria, yeast and fungi can be cultivated with high lipid contents and used as promising feedstock for biodiesel production. However, the high cost of biodiesel production using oil microorganisms has been the biggest obstacle for its industrialization. The process of biodiesel production from microorganisms involves many steps, of which the lipids extraction is the most important and costly. Therefore, searching for an effective and economical extraction system is critical. Various approaches of lipids extraction are discussed in this review, including traditional extraction procedures such as solvent extraction, pressing and solvent integrated extraction, as well as some new procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nigam P S, Singh A. Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 2011, 37(1): 52–68

    Article  MathSciNet  Google Scholar 

  2. Agarwal A K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Progress in Energy and Combustion Science, 2007, 33(3): 233–271

    Article  Google Scholar 

  3. Singh A, Pant D, Korres N E, Nizami A S, Prasad S, Murphy J D. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Bioresource Technology, 2010, 101(13): 5003–5012

    Article  Google Scholar 

  4. Prasad S, Singh A, Joshi H C. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources, Conservation and Recycling, 2007, 50(1): 1–39

    Article  Google Scholar 

  5. Singh A, Smyth B M, Murphy J D. A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renewable & Sustainable Energy Reviews, 2010, 14(1): 277–288

    Article  Google Scholar 

  6. Xu H, Miao X L, Wu Q Y. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 2006, 126(4): 499–507

    Article  Google Scholar 

  7. Gao C F, Zhai Y, Ding Y, Wu Q Y. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Applied Energy, 2010, 87(3): 756–761

    Article  Google Scholar 

  8. Grima E M, Belarbi E H, Fernandez F G A, Medina A R, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 2003, 20(7,8): 491–515

    Article  Google Scholar 

  9. Christie W W. Preparation of lipid extracts from tissues. Advances in Lipid Methodology, 1993, 2: 195–213

    Google Scholar 

  10. Sing S F, Isdepsky A, Borowitzka M A, Moheimani N R. Production of biofuels from microalgae. 2011-04-26, http://www.springerlink.com/content/m00632n167048n75/fulltext.pdf

  11. Shih C N, Marth E H. Aflatoxin formation, lipid synthesis, and glucose metabolism by Aspergillus parasiticus during incubation with and without agitation. Biochimica et Biophysica Acta (BBA) General Subjects, 1974, 338(1): 286–296

    Article  Google Scholar 

  12. Douglas Brown B, Hsu K H, Hammond E G, Glatz B A. A relationship between growth and lipid accumulation in Candida curvata D. Journal of Fermentation and Bioengineering, 1989, 68(5): 344–352

    Article  Google Scholar 

  13. Rose H G, Oklander M. Improved procedure for the extraction of lipids from human erythrocytes. Journal of Lipid Research, 1965, 6(3): 428–431

    Google Scholar 

  14. Khor H, Chan S. Comparative studies of three solvent mixtures for the extraction of soybean lipids. Journal of the American Oil Chemists’ Society, 1985, 62(1): 98–99

    Article  Google Scholar 

  15. Wren J J, Mitchell H K. Extraction methods and an investigation of drosophila lipids. Journal of Biological Chemistry, 1959, 234(11): 2823–2828

    Google Scholar 

  16. Newman H A, Gordon E A, Heggen D W, Keller M D. Rapid extraction of triglycerides from human adipose tissue with petroleum ether. Clinical Chemistry, 1972, 18(3): 290–292

    Google Scholar 

  17. Zhang Y, Dubé M A, McLean D D, Kates M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresource Technology, 2003, 90(3): 229–240

    Article  Google Scholar 

  18. Pulz O, Gross W. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 2004, 65(6): 635–648

    Article  Google Scholar 

  19. Borowitzka M A. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology, 1995, 7(1): 3–15

    Article  Google Scholar 

  20. Meng X, Yang J M, Xu X, Zhang L, Nie Q J, Xian M. Biodiesel production from oleaginous microorganisms. Renewable Energy, 2009, 34(1): 1–5

    Article  Google Scholar 

  21. Bao Z H, Shi M R. Preliminary measurement of drying property for two-phase extracted rapeseed meal and cottenseed meal. China Oils and Fats, 1999, 24(3): 57–59 (in Chinese)

    Google Scholar 

  22. Folch J, Lees M, Sloane Stanley G H. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 1957, 226(1): 497–509

    Google Scholar 

  23. Tybulewicz V L, Tremblay M L, LaMarca M E, Willemsen R, Stubblefield B K, Winfield S, Zablocka B, Sidransky E, Martin BM, Huang S P, Mintzer K A, Westphal H, Mulligan R C, Ginns E I. Animal model of Gaucher’s disease from targeted disruption of the mouse glucocerebrosidase gene. Nature, 1992, 357(6377): 407–410

    Article  Google Scholar 

  24. Park S J, Choi Y E, Kim E J, Park WK, Kim CW, Yang JW. Serial optimization of biomass production using microalga Nannochloris oculata and corresponding lipid biosynthesis. Bioprocess and Biosystems Engineering, 2012, 35(1–2): 3–9

    Article  Google Scholar 

  25. Carlson L A. Extraction of lipids from human whole serum and lipoproteins and from rat liver tissue with methylene chloridemethanol: a comparison with extraction with chloroform-methanol. International Journal of Clinical Chemistry, 1985, 149(1): 89–93

    Article  Google Scholar 

  26. Parkin K L, Kuo S J. Chilling-induced lipid degradation in cucumber (Cucumis sativa L. cv Hybrid C) fruit. Plant Physiology, 1989, 90(3): 1049–1056

    Article  Google Scholar 

  27. Yahara S, Kawamura N, Kishimoto Y, Saida T, Tourtellotte W W. A change in the cerebrosides and sulfatides in a demyelinating nervous system: Development of the methodology and study of multiple sclerosis and Wallerian degeneration. Journal of the Neurological Sciences, 1982, 54(2): 303–315

    Article  Google Scholar 

  28. Somersalo S, Karunen P, Aro E M. The acyl lipid composition of wheat leaves and moss protonemata using a new, non-carcinogenic extraction solvent system. Physiologia Plantarum, 1986, 68(3): 467–470

    Article  Google Scholar 

  29. Katayama K, Takada M, Yuzuriha T, Abe K, Ikenoya S. Simultaneous determination of ubiquinone-10 and ubiquinol-10 in tissues and mitochondria by high performance liquid chromatography. Biochemical and Biophysical Research Communications, 1980, 95(3): 971–977

    Article  Google Scholar 

  30. Gu Z, Yao H, Zhi H, Lin J. Measurement of two compounds VLE data and calculation of three compounds VLE data in hylacetateethanol-water-glycerol. Chemical Research and Application, 2004, 16(5): 653–654

    Google Scholar 

  31. Kim B K, Park P K, Chae H J, Kim E Y. Effect of phenol on Bcarotene content in total carotenoids production in cultivation of Rhodotorula glutinis. Korean Journal of Chemical Engineering, 2004, 21(3): 689–692

    Article  Google Scholar 

  32. Allen P C. New extraction method for nematode lipids. Analytical Biochemistry, 1972, 45(1): 253–259

    Article  Google Scholar 

  33. Cham B E, Knowles B R. A solvent system for delipidation of plasma or serum without protein precipitation. Journal of Lipid Research, 1976, 17(2): 176–181

    Google Scholar 

  34. Martins S V, Lopes P A, Alfaia C M, Rodrigues P O, Alves S P, Pinto R M, Castro M F, Bessa R J, Prates J A. Serum adipokine profile and fatty acid composition of adipose tissues are affected by conjugated linoleic acid and saturated fat diets in obese Zucker rats. British Journal of Nutrition, 2010, 103(6): 869–878

    Article  Google Scholar 

  35. Matyash V, Liebisch G, Kurzchalia T V, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of Lipid Research, 2008, 49(5): 1137–1146

    Article  Google Scholar 

  36. Harvey D M R. Freeze-substitution. Journal of Microscopy, 1982, 127(Pt 2): 209–221

    Article  Google Scholar 

  37. Schmid P, Calvert J, Steiner R. Extraction and purification of lipids: IV. Alternative binary solvent systems to replace chloroformmethanol in studies on biological membranes. Physiological Chemistry and Physics, 1973, 5(2): 157–166

    Google Scholar 

  38. Mecham D, Mohammad A. Extraction of lipids from wheat products. Cereal Chemistry, 1955, 32(5): 405–415

    Google Scholar 

  39. Morrison W R, Tan S L, Hargin K D. Methods for the quantitative analysis of lipids in cereal grains and similar tissues. Journal of the Science of Food and Agriculture, 1980, 31(4): 329–340

    Article  Google Scholar 

  40. Melton S, Moyers R, Playford C. Lipids extracted from soy products by different procedures. Journal of the American Oil Chemists’ Society, 1979, 56(4): 489–493

    Article  Google Scholar 

  41. McGrath L T, Elliott R J. Lipid analysis and fatty acid profiles of individual arterial atherosclerotic plaques. Analytical Biochemistry, 1990, 187(2): 273–276

    Article  Google Scholar 

  42. Lee J Y, Yoo C, Jun S Y, Ahn C Y, Oh H M. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 2010, 101(1 Suppl 1): S75–S77

    Article  Google Scholar 

  43. Du K, Sun X L, Sun Y M, Chen L. Selection of carbon source and nitrogen source for microbial lipid production by fermentation with Trichosporon fermentans. China Oils and Fats, 2010, 35(7): 35–38 (in Chinese)

    Google Scholar 

  44. Sobus M T, Homlund C E. Extraction of lipids from yeast. Lipids, 1976, 11(4): 341–348

    Article  Google Scholar 

  45. Amalia Kartika I, Pontalier P Y, Rigal L. Extraction of sunflower oil by twin screw extruder: screw configuration and operating condition effects. Bioresource Technology, 2006, 97(18): 2302–2310

    Article  Google Scholar 

  46. Schneiter R, Daum G. Extraction of yeast lipids. Methods in Molecular Biology, 2006, 313: 41–45

    Google Scholar 

  47. Hadvary P, Hochuli E, Kupfer E, Lengsfeld H, Weibel E K. Leucine Derivatives. US Patent 4598089. 1986

  48. Takada M, Ikenoya S, Yuzuriha T, Katayama K. Studies on reduced and oxidized coenzyme Q (ubiquinones). II. The determination of oxidation-reduction levels of coenzyme Q in mitochondria, microsomes and plasma by high-performance liquid chromatography. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1982, 679(2): 308–314

    Article  Google Scholar 

  49. Raj K, Misra N, Pachauri G, Sharma M, Tamrakar A K, Singh A B, Srivastava A K, Phani Kiran K, Narasimha Rao C V, Prubhu S R. Novel class of hybrid natural products as antidiabetic agents. Natural Product Research, 2009, 23(1): 60–69

    Article  Google Scholar 

  50. Ranjan A, Patil C, Moholkar V S. Mechanistic assessment of microalgal lipid extraction. Industrial & Engineering Chemistry Research, 2010, 49(6): 2979–2985

    Article  Google Scholar 

  51. Ways P, Hanahan D J. Characterization and quantification of red cell lipids in normal man. Journal of Lipid Research, 1964, 5(3): 318–328

    Google Scholar 

  52. Fajardo A R, Cerdán L E, Medina A R, Fernández F G A, Moreno P A G, Grima E M. Lipid extraction from the microalga Phaeodactylum tricornutum. European Journal of Lipid Science and Technology, 2007, 109(2): 120–126

    Article  Google Scholar 

  53. Smith J S. Evaluation of Analytical Data. Food Analysis (Nielsen S ed. Food Science Text Series). New York: Kluwer Academic/Plenum Press, 2003, 51–64

    Google Scholar 

  54. Ryckebosch E, Muylaert K, Foubert I. Optimization of an analytical procedure for extraction of lipids from microalgae. Journal of the American Oil Chemists’ Society, 2012, 89(2): 189–198

    Article  Google Scholar 

  55. Nakajima T, Kondo A. Method for Extracting Fat-Soluble Components from Microbial Cells. US Patent 6258964 B1, 2001

  56. Boselli E, Velazco V, Caboni M F, Lercker G. Pressurized liquid extraction of lipids for the determination of oxysterols in eggcontaining food. Journal of Chromatography A, 2001, 917(1,2): 239–244

    Article  Google Scholar 

  57. Richter B E, Jones B A, Ezzell J L, Porter N L, Avdalovic N, Pohl C. Accelerated solvent extraction: A technique for sample preparation. Analytical Chemistry, 1996, 68(6): 1033–1039

    Article  Google Scholar 

  58. Iqbal J. Development of cost-effective and benign lipid extraction system for microalgae. Dissertation for the Doctoral Degree. Baton Rouge: Louisiana State University, 2012

    Google Scholar 

  59. Herrero M, Ibáñez E, Cifuentes A, Señoráns J. Pressurized liquid extracts from Spirulina platensis microalga. Determination of their antioxidant activity and preliminary analysis by micellar electrokinetic chromatography. Journal of Chromatography. A, 2004, 1047(2): 195–203

    Google Scholar 

  60. Jaime L, Mendiola J A, Herrero M, Soler-Rivas C, Santoyo S, Señorans F J, Cifuentes A, Ibáñez E. Separation and characterization of antioxidants from Spirulina platensis microalga combining pressurized liquid extraction, TLC, and HPLC-DAD. Journal of Separation Science, 2005, 28(16): 2111–2119

    Article  Google Scholar 

  61. Rodríguez-Meizoso I, Jaime L, Santoyo S, Cifuentes A, García-Blairsy Reina G, Señorás F J, Ibáez E. Pressurized fluid extraction of bioactive compounds from Phormidium species. Journal of Agricultural and Food Chemistry, 2008, 56(10): 3517–3523

    Article  Google Scholar 

  62. Andrich G, Nesti U, Venturi F, Zinnai A, Fiorentini R. Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. European Journal of Lipid Science and Technology, 2005, 107(6): 381–386

    Article  Google Scholar 

  63. Heikes D L, Scott B, Gorzovalitis N A. Quantitation of volatile oils in ground cumin by supercritical fluid extraction and gas chromatography with flame ionization detection. Journal of AOAC International, 2001, 84(4): 1130–1134

    Google Scholar 

  64. Ivanov D, Čolović R, Bera O, Lević J, Sredanović S. Supercritical fluid extraction as a method for fat content determination and preparative technique for fatty acid analysis in mesh feed for pigs. European Food Research and Technology, 2011, 233(2): 343–350

    Article  Google Scholar 

  65. Ixtaina V Y, Vega A, Nolasco S M, Tomá M C, Gimeno M, Bázana E, Tecante A. Supercritical carbon dioxide extraction of oil from Mexican chia seed (Salvia hispanica L.): Characterization and process optimization. Journal of Supercritical Fluids, 2010, 55(1): 192–199

    Article  Google Scholar 

  66. Gonzáez-Vila F J, Bautista JM, Gutiérez A, Del Rio J C, Gonzáez A G. Supercritical carbon dioxide extraction of lipids from Eucalyptus globulus wood. Journal of Biochemical and Biophysical Methods, 2000, 43(1–3): 345–351

    Article  Google Scholar 

  67. Wang L, Weller C L, Schlegel V L, Carr T P, Cuppett S L. Comparison of supercritical CO2 and hexane extraction of lipids from sorghum distillers grains. European Journal of Lipid Science and Technology, 2007, 109(6): 567–574

    Article  Google Scholar 

  68. Sahena F, Zaidul I, Jinap S, Karim A, Abbas K, Norulaini N, Omar A. Application of supercritical CO2 in lipid extraction-A review. Journal of Food Engineering, 2009, 95(2): 240–253

    Article  Google Scholar 

  69. Couto R M, Fernandes J, da Silva M, Simõs P C. Supercritical fluid extraction of lipids from spent coffee grounds. Journal of Supercritical Fluids, 2009, 51(2): 159–166

    Article  Google Scholar 

  70. Boutin O, Badens E. Extraction from oleaginous seeds using supercritical CO2: Experimental design and products quality. Journal of Food Engineering, 2009, 92(4): 396–402

    Article  Google Scholar 

  71. Rakhuba D, Novik G, Dey E S. Application of supercritical carbon dioxide (scCO2) for the extraction of glycolipids from Lactobacillus plantarum B-01. Journal of Supercritical Fluids, 2009, 49(1): 45–51

    Article  Google Scholar 

  72. Hubbard J, Downing J, Ram M, Chung O. Lipid extraction from wheat flour using supercritical fluid extraction. Cereal Chemistry, 2004, 91(6): 693–698

    Article  Google Scholar 

  73. Gong C H, Jin B, Yao Y D, Liu H C. Supercritical CO2 extraction of microorganism lipids. China Patent CN03139630.5. 2005

  74. Andrich G, Zinnai A, Nesti U, Venturi F. Supercritical fluid extraction of oil from microalga Spirulina (Arthrospira) platensis. Acta Alimentaria, 2006, 35(2): 195–203

    Article  Google Scholar 

  75. Mendes R L, Nobre B P, Cardoso M T, Pereira A P, Palavra A F. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chimica Acta, 2003, 356: 328–334

    Article  Google Scholar 

  76. Couto R M, Simõs P C, Reis A, da Silva T L, Martins V H, Sáchez-Vicente Y. Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Engineering in Life Sciences, 2010, 10(2): 158–164

    Google Scholar 

  77. Mendes R L, Nobre B P, Cardoso M T, Pereira A P, Palavra A F. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chimica Acta, 2003, 356: 328–334

    Article  Google Scholar 

  78. Kopcak U, Mohamed R S. Caffeine solubility in supercritical carbon dioxide/co-solvent mixtures. Journal of Supercritical Fluids, 2005, 34(2): 209–214

    Article  Google Scholar 

  79. Sauceau M, Letourneau J J, Freiss B, Richon D, Fages J. Solubility of eflucimibe in supercritical carbon dioxide with or without a cosolvent. Journal of Supercritical Fluids, 2004, 31(2): 133–140

    Article  Google Scholar 

  80. Vinatoru M, Toma M, Radu O, Filip P I, Lazurca D, Mason T J. The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrasonics Sonochemistry, 1997, 4(2): 135–139

    Article  Google Scholar 

  81. Chemat F, Grondin I, Costes P, Moutoussamy L, Sing A S, Smadja J. High power ultrasound effects on lipid oxidation of refined sunflower oil. Ultrasonics Sonochemistry, 2004, 11(5): 281–285

    Article  Google Scholar 

  82. Metherel A H, Taha A Y, Izadi H, Stark K D. The application of ultrasound energy to increase lipid extraction throughput of solid matrix samples (flaxseed). Prostaglandins, Leukotrienes and Essential Fatty Acids, 2009, 81(5,6): 417–423

    Article  Google Scholar 

  83. Palma M, Barroso C G. Ultrasound-assisted extraction and determination of tartaric and malic acids from grapes and winemaking by-products. Analytica Chimica Acta, 2002, 458(1): 119–130

    Article  Google Scholar 

  84. Schinor E C, Salvador MJ, Turatti I C C, Zucchi O L A D, Dias D A. Comparison of classical and ultrasound-assisted extractions of steroids and triterpenoids from three Chresta spp. Ultrasonics Sonochemistry, 2004, 11(6): 415–421

    Google Scholar 

  85. Herrero M, Cifuentes A, Ibanez E. Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chemistry, 2006, 98(1): 136–148

    Article  Google Scholar 

  86. Alupului A, Calinescu I, Lavric V. Ultrasonic vs. microwave extraction intensification of active principles from medicinal plants. 2008, http://www.aidic.it/icheap9/webpapers/14Alupului.pdf

  87. Balasubramanian S, Allen J D, Kanitkar A, Boldor D. Oil extraction from Scenedesmus obliquus using a continuous microwave system—design, optimization, and quality characterization. Bioresource Technology, 2011, 102(3): 3396–3403

    Article  Google Scholar 

  88. Pare J R J, Sigouin M, Lapointe J. Microwave-assisted natural products extraction. US Patent 5002784, 1991

  89. Ganzler K, Salgó A, Valkó K. Microwave extraction. A novel sample preparation method for chromatography. Journal of Chromatography. A, 1986, 371: 299–306

    Article  Google Scholar 

  90. Leray C, Grcic T, Gutbier G, Bnouham M. Microwave oven extraction procedure for lipid analysis in biological samples. Analusis, 1995, 23(2): 65–67

    Google Scholar 

  91. Liu Y, Shi J, Langrish T. Water-based extraction of pectin from flavedo and albedo of orange peels. Chemical Engineering Journal, 2006, 120(3): 203–209

    Article  Google Scholar 

  92. Antezana Z, Mauricio D R. Investigation of pulsed electric field (PEF) as an intensification pretreatment for solvent lipid extraction from microalgae, utilizing ethyl acetate as a greener substitute to chloroform-based extraction. Dissertation for the Master’s Degree. Lawrence: University of Kansas, 2011

    Google Scholar 

  93. Teixeira R E. Energy-efficient extraction of fuel and chemical feedstocks from algae. Green Chemistry, 2012, 14(2): 419–427

    Article  MathSciNet  Google Scholar 

  94. Young G, Nippgen F, Titterbrandt S, Cooney M J. Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Separation and Purification Technology, 2010, 72(1): 118–121

    Article  Google Scholar 

  95. Schonemann H, Gudinas A, Williams K, Wetmore P, Krukonis V. Method for extraction and concentration of carotenoids using supercritical fluids. US Patent 7329789 B1, 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunwen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Chen, L., Rakesh, B. et al. Technologies for extracting lipids from oleaginous microorganisms for biodiesel production. Front. Energy 6, 266–274 (2012). https://doi.org/10.1007/s11708-012-0193-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-012-0193-y

Keywords

Navigation